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Supplementary Material

Configuration Base Distillation FT
Epochs 300/450 300 30+ 30
Batch size 2048 1024
Weight decay 0.05 le-8
Warmup Epochs 20 0
Cooldown Epochs 10 0
Learning rate 2e-3 le-3
Min Learning rate 2e-5 le-5
Optimizer (Momentum) Adamw (0.9, 0.999)
Gradient Clipping 0.02
Learning rate scheduler Cosine
Rand Augment rand-m9-mstd0.5-inc1
Mixup 0.8
Cutmix 1.0
Mixup switch prob 0.5
Random erasing prob 0.25
Label smoothing 0.1
EMA decay rate 0.9995
Teacher model None  RegNetY-160  None

Table A. Settings for training EfficientViM. FT: finetuning with
higher resolution images (Section B).

A. Implementation Details

We use the ImageNet-1K [3] to validate the effectiveness
of EfficientViM on the image classification task. For train-
ing EfficientViM, we follow the training recipes of previ-
ous works [21, 24, 28]. Specifically, all models are trained
from scratch with a batch size of 2,048 for 300 epochs using
AdamW optimizer [14] with a warmup of 20 epochs and a
cooldown of 10 epochs. Following [1, 7, 10], we also report
the results after training 450 epochs. During training, we
adopt a cosine annealing [15] scheme with the initial learn-
ing rate of 2 x 1072 decreasing to 2 x 1075, The weight
decay of 0.05 and gradient clipping with a threshold of 0.02
are used. Also, MESA [4] and EMA with the decay rate of
0.9995 is adopted following [5, 21]. For data augmentation,
we follow DeiT [23] using Mixup [30] & CutMix [29] with
a Label smoothing [22], RandAugment [2], and Random
Erasing [32]. We report the throughput and latency with the
batch size of 256 on Nvidia RTX 3090 GPU.

Additionally, we finetune the model with the batch size of
1024, using cosine annealing with the initial learning rate
of 1 x 1073, for 30 epochs at a resolution of 3842, followed
by an additional 30 epochs at 5122. For a fair compari-
son, we employ pre-trained models trained for 300 epochs.
Also, to report the throughput of the models with extremely

Method | Size | Thr. Thry Top-1

SHVIT-S4 [28] 3842 3,685 x0.99 81.0 | 16.5M 2225M
EfficientViM-M4 | 3842 | 3,724 x1.00 80.9 | 21.3M 2379M

SHVIT-S4 [28] 5122]2,122 x0.86 82.0 | 16.5M 3973M
EfficientViM-M4 | 5122 [ 2,452 x1.00 81.9 | 21.3M 4154M

Params FLOPs

Table B. Classification results on ImageNet-1K [3] after fine-
tuning with higher resolutions. Thr is relative throughput
compared to EfficientViM-M4.
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Figure A. Latency comparison of recent efficient networks for
an extremely high-resolution image.

high-resolution images in Figure A, we start with a batch
size of 256 and halve it once the memory exceeds the GPU
limit as the resolution increases. Regarding training with
distillation, all settings are the same as in Table 3. of the
main paper except for the guidance from the teacher model
of RegNetY-160 [20] following DeiT [23].

B. EfficientViM with high-resolution images.

Following [28], we also explore the applicability of Ef-
ficientViM on high-resolution images after fine-tuning 30
epochs at a resolution of 3842, followed by an additional
30 epochs at 5122, For a fair comparison, we use the
EfficientViM-M4 pre-trained for 300 epochs. In 3842
size, EfficientViM demonstrates competitive performance
as presented in Table B. Interestingly, when the resolu-
tion increases, the throughput gap between EfficientViM
and SHVIT [28] gets larger, resulting in more than 15%
speedup compared to SHVIT in 5122 while achieving com-
parable accuracy. We further investigate the scalability of
our method in extremely high-resolution images beyond
5122, by comparing the latency of the models while scal-
ing the resolution from 5122 to 40962. As depicted in Fig-
ure A, we observe an advantage of EfficientViM over the



Method | Thr. Top-1| Params FLOPs

(A) EfficientViM-M2 (Base) | 17,005 75.4 13.9M 355M
(B) EfficientViM-M3 11,952 775 16.6M 656M
a. Token Mixers (Base: HSM-SSD)
(C) (—)NC-SSD[21] 9,786 76.2 13.0M 382M

(—) Self-Attention [27] | 13,038 76.1 13.6M 416M
b. Head designs (Base: Single-head (SH) with A € RLXN)
(E) (—) Multi-head 15,703 75.5 13.9M 352M
(F) (—=)SHw.acRE 17,081 75.2 13.9M 352M
c. Multi-stage fusion (Base: h())

(—) Fusion with x(8) | 17,041 753 | 134M  355M
(H) (—) None 17,317 75.1 13.0M 354M
d. # states (N ) of each stage (Base: [49,25,9])

(—)[9, 25, 49] 16,476 75.4 14.0M 407M
) (—)[25,25,25] 16,991 75.2 13.9M 373M
e. Normalization (Base: Partial LN)
(L) (—)FullBN | 17432 NaN | 139M  355M

Table C. Ablation studies on EfficientViM. All ablations are
conducted with EfficientViM-M2. See Figure B for a visualiza-
tion comparing the ablated models with the Pareto front of Effi-
cientViM.

recent state-of-the-art method on extremely high-resolution
images. EfficientViM shows about 3x, 4x, and 7x faster
speed compared to SHVIT, EMO [31], and MobileOne [26],
respectively. This notable result highlights the scalability
of EfficientViM for high-resolution images based on linear
cost of HSM-SSD.

C. Ablation Studies

Here, we show the effectiveness of HSM-SSD by ablat-
ing the proposed components. The results are summarized
in Table C, and Figure B. First, we compare HSM-SSD with
other global token mixers, by replacing them with other
methods including (C) NC-SSD [21] and (D) self-attention
(SA) [27]. Considering that EfficientViM-M3 with HSM-
SSD shows 77.5% with a throughput of 11,952 (im/s),
NC-SSD and SA show a poorer speed-accuracy trade-off
than HSM-SSD. Regarding head choices, we observe that
our single-head design brings significant speed-up (17005
(im/s)) over (E) multi-head (15,703 (im/s)) without perfor-
mance degradation. Additionally, defining the importance
score per state as A € R¥*N to mimic multi-head leads
to the +0.2% gain with a minor increase in latency, com-
pared to using the original score (F) a € RY. Note that
all ablates models (C-F) are placed under the Pareto front
of EfficientViM (Figure Ba), which proves the efficacy of
HSM-SSD and our single-head design.

Also, multi-stage fusion with hidden states (75.4%) sur-
passes the accuracy of (G) the fusion with the output feature
maps x(%) (75.3%) and (H) the EfficientViM without fusion
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Figure B. Ablation studies on EfficientViM. Refer to Table C for
the corresponding models. Red line indicates the Pareto frontier
of EfficientViM.

Method ‘ Token Mixer ‘ Thr. Top-1 | Params FLOPs
VSSD-M [21] NC-SSD 1459 825 | 14M 233G
VSSD-T [21] NC-SSD 947 84.1 | 2dM  4.5G
VSSD-T — HSM-SSD | 1660 82.7 | 24dM  3.7G

Table D. Comparison of HSM-SSD with NC-SSD.

(75.1%) under similar throughput. For the number of states
N, we observe that an increasing schedule with respect to
the stages is more effective than (I) a decreasing or (J) con-
stant schedule. See (G)-(J) in Table C and Figure Bb for
the ablation studies on multi-stage fusion and the number
of states. Additionally, for normalization, using (L) batch
normalization (BN) across all operations is simple and fast,
but, this approach leads to numerical instability. Therefore,
we apply layer normalization (LN) only before HSM-SSD,
and BN for the rest.

D. Comparison of HSM-SSD with NC-SSD

To show the advantage of the proposed HSM-SSD over NC-
SSD, we replace NC-SSD of VSSD-T [21] with HSM-SSD
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Figure C. Comparison of Effective Receptive Fields (ERF) [16]

and train the model following the original training con-
figuration provided in the official repository. In Table D,
after replacing the token mixer with HSM-SSD, VSSD-T
with HSM-SSD demonstrates a significant increase in the
throughput (1.8 x). Notably, compared to scaling down the
models to smaller sizes (e.g., VSSD-M), replacing the to-
ken mixer with HSM-SSD provides better speed-accuracy
trade-offs (14% faster, +0.2% accuracy), highlighting the
advantage of HSM-SSD over NC-SSD. We also provide the
qualitative comparison of HSM-SSD with NC-SSD in the
following section.

E. Effective Receptive Field of HSM-SSD

In this section, we qualitatively compare the HSM-SSD
with previous token mixers including convolutions in
ResNet50 [6], attentions in vision Transformers such as
DeiT-S [23] and Swin-T [13], and SSM and SSD variants
in vision Mambas like VMamba-T [12] and VSSD-T [21].
We here analyze the Effective Receptive Fields (ERF) [16]
of each model, which quantifies the region of the input that
contributes to the output. In Figure C, we visualize the ERF
with respect to the central pixel of the output feature maps.
Among various models, EfficientViM-M4 with HSM-SSD
shows a global receptive field rather than focusing on a
specific region. For instance, ResNet50 shows a relatively
small ERF due to its intrinsic locality of convolution. The
attention mechanism in DeiT-S predominantly focuses on
the central pixel itself, and the shifted window attention
in Swin-T limits the global receptive field. Further, since
SSM is conducted after flattening the image patch both ver-
tically and horizontally in VMamba-T, it generates an un-
natural cross pattern in ERF. VSSD-T shows a relatively
better global receptive field, yet it still largely depends on
the close region. On the other hand, EfficientViM-M4 gen-
erates a global effective receptive field (ERF) similar to that
of VSSD-T but extracts more information from all regions,
enabling it to capture the global dependencies better.

F. CPU & Mobile Latency

To understand the applicability of EfficientViM in a
resource-constrained environment, we here provide the la-

Latency (ms)
GPU CPU Mobile

MobileViTV2 1.0 [18] 0.34 138.8 1.1 78.1
EfficientMod-XS [17] 0.19 33.1 0.9 78.3(79.4)
MobileFormer-508M [1] | 0.22 29.7 2.1 79.3

Method Top-1

FastViT-T12 [25] 0.37 81.3 1.8 79.1 (80.3)
MobileOne-S4 [26] 0.33 79.9 1.0 79.4

SHViT-S4 [28] 0.12 274 0.9 79.4 (80.2)
EfficientViM-M4 0.12 32.1 1.0 79.6 (80.7)

Table E. Latency comparison of EfficientViM-M4 with prior
works. The number in parentheses indicates the performance with
distillation.

tencies of vision backbones in GPU, CPU, and mobile de-
vices (Table E). The latencies are measured with a batch
size of 256 on an NVIDIA RTX 3090 GPU, 16 on an
AMD EPYC 7742 CPU, and 1 on an iPhone 16 (iOS
18.1). For mobile latencies, we use CoreML [19] library.
EfficientViM-M4 achieves the highest accuracy of 79.6%
with the lowest latency on GPUs and competitive latency
on CPU and iPhone 16. Although EfficientViM-M4 shows
slightly higher latency than a few of the prior works in CPU
and mobile, EfficientViM-M4 shows a significantly lower
latency as the resolution increases (Figure D). In the res-
olution of 20482, EfficientViM-M4 achieves at least 58%
and 20% reductions in latency compared to previous works
in iPhone 16 and CPU, respectively. To summarize, Effi-
cientViM serves as a general solution suitable for both GPU
and edge devices. Furthermore, EfficientViM is an effective
backbone for real-world applications where high-resolution
images are given, such as in image generation, object detec-
tion, and instance segmentation.

G. Proof for Proposition 1

Proposition 1. Let N = L, al] ©B = I, and C € RL*E
be diagonal. Then, HSM-SSD(x,a, B, C) is equivalent to
NC-SSD(x,a,B, C) including gating and output projec-
tion, as Xy = f(y) = Cf(h).

Proof. 1t is sufficient to show that Cf(h) of HSM-SSD is
equivalent to f(y) = (Ch ® o(x;, W))W,y in order to
prove the proposition. Here, based on the assumption, the
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Figure D. Mobile and CPU latency comparison.

following holds:

Cf (h)
=C ((h ® U(hinWZ))Wom)
=C((hoo(((al] © B) xin)W,))Woy)
= C(h O] U(Xinwz))wout
= (Ch ® a(xian))Wout = f(y)

Remarks. We assume that C is a diagonal matrix but C is
dependent on x;, since C = x;, W¢. Unfortunately, there
does not exist a weight matrix W ¢ that makes C diag-
noal for arbitrary inputs x;,. We provide this proposition
to understand the relationship between the HSM-SSD and
NC-SSD operations. This implies that in specific conditions
with particular data, the two methods yield the same result.
However, one approach does not generalize the other.

H. Discussion of multi-stage hidden stage fu-
sion

In this section, we briefly discuss how multi-stage hid-
den state fusion (MSF) provides a performance boost, al-
though the earlier layers generally provide less accurate log-
its. Note that our MSF leverages the logits across the layer
as deep supervision and multi-scale representation to im-
prove the performance. MSF aligns with the concept of
‘deep supervision’ in pioneering works, such as DSN [9],
and U-Net++ [33]. Specifically, during training, MSF can
be interpreted as auxiliary classification tasks, encouraging
even the earlier layers to learn more discriminative features.
Further, the earlier layers generally capture fine-grained pat-
terns, while later layers extract high-level semantics, i.e.,
DenseNet [8] and FPN [11]. By combining these comple-
mentary representations with the learnable coefficients, we

take advantage of the ensemble effect from ‘multi-scale rep-
resentations’. In fact, it is well-known that an ensemble of
the models often outperforms each model, highlighting the
benefits of HSM. As a results, MSF brings substantial im-
provements on EfficientViM.
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