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Appendix
We provide additional discussions (Sec. A), as well as

further details on the training process of our object-effect-
removal model (Sec. B), the inference pipeline for object
and effect removal (Sec. C), the optimization details for om-
nimatte reconstruction (Sec. D), runtime analysis (Sec. E),
the quantitative comparisons (Sec. F), the quantitative abla-
tion study (Sec. G). The video comparisons, training video
examples, and self-attention visualization are provided in
the project page.

A. Additional Discussions
Reproducibility. We will release our dataset for repro-
ducibility. In addition, we finetuned a publicly available
CogVideoX [56] using the same data to create a DiT ver-
sion of Casper*, without adjusting the original CogVideoX
hyperparameters. The results are shown in Fig. 1. The sam-
pling process takes 66 sec for an 85-frame, 384×672 video
and a trimask with 50 DDIM steps w/o CFG on an A100
GPU.

Handling occluded foreground. Our Casper model can
also handle certain occlusion scenarios where the fore-
ground object is partially obscured by background content
(Fig. 2). We can treat the occluding background content as
additional foreground objects and remove them to reveal the
fully visible target object. Subsequently, the omnimatte op-
timization process utilizes the completed solo video and the
clean background without occlusions as inputs to generate
a complete omnimatte layer.

Impact of text prompts. We used simple, short prompts
such as “a clean beach” for fine-tuning the Lumiere-based
Casper. While Casper is primarily driven by the input

*For CogVideoX-based Casper finetuning, we adopt the codes and
model from the third-party github: https://github.com/aigc-
apps/CogVideoX-Fun.git
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Figure 1. Object-effect-removal results of CogVideoX-based
Casper.

video and trimask and less sensitive to text prompts (“empty
scene” works well for both rows below), we did observe that
a highly unrelated prompt (e.g., “rock concert”) could affect
the performance, as shown in Fig. 3.

Challenges in handling similar objects. While our
Kubric dataset includes multiple similar objects to help
Casper handle such cases, it may still struggle with com-
plex scenarios. We observed a similar issue in CogVideoX-
based Casper, potentially due to the domain discrepancies
between Kubric data and real-world videos. This could be
mitigated in future work through more realistic data gener-
ation and re-introducing successful removal results into the
training set.

Undesired detail changes. These artifacts are caused
by Lumiere’s SSR model, which can hallucinate high-
frequency details. While we use a post-processing step to
transfer original details, it is applied conservatively to avoid
altering effect-removal areas. A future direction may be ex-
ploring an SSR model that can refer to the original video
when upsampling the removal result.
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(a) Remove  occluding content

(b) Reconstruct complete omnimatte

Input video Trimask Output solo (top) & 
clean BG (bottom)

Input solo video Input clean BG Output omnimatte

Figure 2. Handle occluding background content. Our method
can also handle scenarios where the foreground object is occluded
by background content (e.g., poles). By treating the occluding
poles as additional foreground objects and removing them, we ob-
tain a complete solo video of the dog and a clean-plate background
video. These two videos can then be used to reconstruct the com-
plete omnimatte of the dog.

Input Trimask “an empty scene” “a crowded rock concert 
at night in 1986”

Figure 3. Impact of the text prompt.

B. Training Details of Our Casper Model
Omnimatte data. For the Omnimatte training data, we
observed that the background video reconstructions pro-
duced by existing omnimatte methods [5, 7, 10] can lack
sharpness and alignment with the original input video. This
can lead to degradation of the original details in the preser-
vation regions of our removal model, which is trained on
pairs of original inputs and blurry background videos. To
address this issue, we use the video reconstruction results
of omnimatte methods as training inputs instead of the orig-
inal videos. Since the video reconstruction is composed of
omnimatte layers, it maintains the same quality as the tar-
get background video, preventing the model from learning
quality degradation.

Kubric data generation. To synthesize our Kubric data,
we randomly generate 1 to 6 objects in a scene. We also

introduce challenging scenarios such as stationary objects,
varying lighting conditions, and reflective surfaces. The
Kubric generation script will be publicly released.

Object-Paste data. Due to the challenge of real data
collection, Object-Paste is synthesized to enhance inpaint-
ing and background preservation, but not effect removal.
Though not always reflected in metrics, we observed qual-
itative improvements in the main paper Fig. 9a and Supp.
HTML. A tradeoff exists between background preservation
and effect removal, and a high Object-Paste weight may
hinder effect-removal performance. To balance this, we set
its weight to 2% in the training set.

Trimask label for synthetic data. For both synthetic
Kubric and Object-Paste data, we randomly switch the la-
bels from white to gray, to encourage the model to learn
preservation and inpainting capabilities in gray-labeled
background areas.

Data augmentation. Video examples are randomly
clipped into 80-frame segments and cropped to a
128×128px resolution for training. For real videos shorter
than 80 frames, we apply temporal reflective padding to
achieve the desired length. We augment the four different
categories of data with different ratios during the training.
Real-world examples from Omnimatte and Tripod consti-
tute 50% of the training data, while synthesized Kubric and
Object-Paste data account for approximately 48% and 2%,
respectively.

We fully finetune our Casper model from the pretrained
Lumiere inpainting model [1, 8] for 20,000 iterations and a
batch size of 32.

C. Inference Details of Object and Effect Re-
moval

Our Casper model takes 256 DDPM [2] sampling steps
without using classifier free guidance. It is important to note
that we do not cherry pick random seeds for object and ef-
fect removal outputs. We consistently apply a fixed random
seed (= 0) to all input videos.

D. Omnimatte Optimization Details
The Casper model has a resolution of 128px (e.g.,
224×128) inherited from the Lumiere base stage. While
Lumiere’s SSR stage [1] upsamples the removal videos
(e.g., Ibg) to higher resolutions, (e.g., ISSR

bg ), it may hal-
lucinate high-frequency detail in unpredictable ways. Thus,
directly reconstructing the omnimattes from the upsampled
videos may result in noisy foreground layers, capturing un-
wanted background artifacts.



To mitigate this issue, we employ a bootstrapping strat-
egy. Initially, we optimize the omnimatte with the base
model outputs (Ii, Ibg) to obtain the alpha maps at the
base 128px resolution. We then use a bilinear upsampling
of the 128px alpha map to supervise the optimization of a
higher-resolution omnimatte (e.g., 640×384) from the up-
sampled pair (ISSR

i , ISSR
bg ) for finer details. The optimiza-

tions of base and upsampled resolutions use the same algo-
rithm (Sec. 3.5 of main paper) but with slightly different
hyper-parameter settings.

Base optimization We optimize the base resolution omni-
mattes using the following loss function: Ltotal = Lrecon+
λsparsityLsparsity + λmaskLmask to optimize the base reso-
lution omnimattes. The balancing weight λsparsity is set to
1, along with the constant weights β0 and β1 for the sparsity
loss (Eq. 4 of the main paper) are empirically set to 1 and
10, respectively. The weight of mask supervision λmask is
initialized to 20 and gradually reduced over the optimiza-
tion. The optimization takes 20,000 iterations with a batch
size of 20 frames at a 128px base resolution of 128px.

Upsampling optimization To bootstrap higher resolution
of omnimattes (i.e., foreground RGB Ihr

i,fg and alpha αhr
i ),

we employ the solo video and background video of the SSR
outputs, (ISSR

i , ISSR
bg ) as the input pair for our optimiza-

tion framework. The foreground RGB variables are initial-
ized using the upsampled base-resolution optimized RGB
Ii,fg, and an additional alpha supervision loss, Lalpha =
∥αhr

i − αup
i ∥2, is introduced, supervised by the upsampled

base-resolution alpha maps, αup
i . To prevent the model

from learning aliased boundaries, we disable supervision
loss on the edge regions of the alpha maps. Moreover, we
switch the photometric reconstruction loss, Lrecon (Eq. 3
of the main paper), from L2 loss to L1 loss to mitigate the
impact of outlier hallucinated high-frequency details pro-
duced by the SSR model. The loss weights λsparsity and
λmask are both initialized to 10, while the mask supervision
loss Lmask is deactivated after the first 2,000 iterations. The
weight of the base-resolution alpha supervision loss λalpha

is set to 20. The optimization process runs for 20,000 itera-
tions to obtain the final omnimattes.

Input video reconstruction and Detail Transfer To re-
construct the original input video from individual optimized
omnimatte layers, depth information is required to deter-
mine the correct layer order in multi-object scenarios. We
utilize DepthCrafter [3] to estimate video depth and define
the frame-level depth order for foreground layers. Sub-
sequently, all layers, including the clean background, are
composited from back to front using the over operation [9].

During the compositing process, we compute the com-
posited opacity for each layer. For layer pixels where the
composited opacity reaches 1 (i.e., fully opaque), a detail
transfer step [6, 7, 10] is applied. This step copies the origi-

nal details from the input video to the high-resolution omn-
imatte and background layers, mitigating misaligned high-
frequency details that may have been hallucinated by the
SSR model.

E. Runtime
For Stage 1, Casper takes 12 min to process an 80-frame
video and 15-20 min for longer videos, the same as the
original Lumiere-Inpainting. We run Casper on a 96GB
TPU with a batch size of 4 (e.g., three solo videos and a
clean background). Additional objects can be run in par-
allel with multiple TPUs. For Lumiere SSR upsampling,
it takes around 15 minutes. For Stage 2, our unoptimized
code takes 7 min to produce each object layer on a 48GB
TPU. Each object layer is computed independently and thus
can be parallelized. Once obtaining all layers, the post-
processing detail transfer takes 1 minute. For an 80-frame
video of 3 objects on a single TPU, the entire process takes
12+15+7× 3+1 = 49 min (or 12+15+7+1 = 35 min
with multi TPUs). In contrast, OmnimatteRF takes 3 hr to
optimize a NeRF and all layers together, potentially limiting
the number of objects due to GPU memory constraints.

F. Onimatte-RF Synthetic Evaluation Bench-
mark

Table 1 presents the per-scene evaluation scores. Om-
nimatte3D [10] fails to reconstruct the background layer
in two scenes, resulting in all-zero outputs. Omnimat-
teRF [5] employs an additional background retraining step
to enhance effect removal and inpainting accuracy in cer-
tain cases by leveraging a global background scene model.
Our method performs the overall best in both PSNR and
LPIPS [12] metrics.

G. Ablation study

Training data. Table 2 presents a quantitative ablation
study on the 10 synthetic evaluation scenes from Omnimat-
teRF [5]. By incrementally adding four distinct data cate-
gories to the training set, the removal model achieves im-
proved effect removal performance. For further video com-
parisons on real-world videos, please refer to our supple-
mentary HTML.
Input condition. Table 3 illustrates the quantitative per-
formance of removal models trained with various input con-
dition settings. The original inpainting condition masks out
the RGB values within the removal regions and concate-
nates them with a binary mask. Following ObjectDrop [11],
we unmask the RGB values in the removal regions to enable
the model to associate effects with content. Finally, we in-
troduce our proposed trimask to replace the binary mask
condition, alleviating ambiguity in effect removal within



Table 1. Quantitative comparison. Following the benchmark established in OmnimatteRF [5], we evaluate the effect-removal quality on
background videos of 10 synthetic scenes. Our method achieves the best overall scores in both PSNR and LPIPS metrics. We adopt the
numbers of [4, 5, 7] reported in OmnimatteRF [5]. Best results are highlighted in red and second-best in yellow. Results marked as “-”
indicate failures (e.g., all zeros in Omnimatte3D [10]).

Scene Movie-Donkey Movie-Dog Movie-Chicken Movie-Rooster Movie-Dodge Kubric-Car Kubric-Cars Kubric-Bag Kubric-Chair Kubric-Pillow Average
Metric PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓
ObjectDrop [11] 27.23 0.091 28.84 0.129 27.87 0.153 26.68 0.145 29.64 0.102 33.92 0.087 34.31 0.101 32.13 0.051 34.95 0.081 35.80 0.096 31.14 0.104
Propainter [13] 27.09 0.133 27.67 0.109 26.82 0.119 24.31 0.143 31.31 0.065 32.59 0.075 34.54 0.081 32.52 0.046 34.99 0.047 38.72 0.030 31.06 0.085
Lumiere inpainting [1] 25.31 0.157 26.97 0.159 26.60 0.162 24.39 0.163 29.82 0.101 30.05 0.201 31.04 0.202 29.32 0.165 32.11 0.143 34.77 0.075 29.04 0.153
Ominmatte [7] 19.11 0.315 21.74 0.279 20.95 0.312 23.14 0.220 23.88 0.067 31.14 0.162 31.20 0.157 23.64 0.271 26.91 0.175 21.17 0.270 24.29 0.223
LNA [4] 18.79 0.104 26.08 0.154 19.22 0.190 26.46 0.131 24.94 0.068 - - - - 27.08 0.138 21.21 0.105 31.66 0.080 - -
Omnimatte3D [10] 24.72 0.234 23.15 0.372 24.17 0.266 23.98 0.372 - - 34.61 0.142 36.48 0.126 33.94 0.135 - - 37.01 0.119 - -
OmnimatteRF [5] 38.24 0.005 31.44 0.030 32.86 0.021 27.65 0.024 39.11 0.006 39.09 0.033 39.78 0.032 39.58 0.029 42.46 0.023 43.62 0.022 37.38 0.023
Ours 32.02 0.017 33.33 0.033 32.59 0.037 29.31 0.047 36.20 0.014 42.78 0.011 44.41 0.016 42.96 0.007 43.94 0.011 46.25 0.006 38.38 0.020

Table 2. Ablation study on our training data. To assess the
individual contribution of each data category, we conduct an ab-
lation study by incrementally adding each category to the training
set. We encourage the readers to view our HTML file for visual
comparisons on in-the-wild videos.

Training data category Metric
Omnimatte Tripod Kubric Object-Paste PSNR↑ LPIPS↓

✓ ✗ ✗ ✗ 37.06 0.027
✓ ✓ ✗ ✗ 36.97 0.026
✓ ✓ ✓ ✗ 38.36 0.020
✓ ✓ ✓ ✓ 38.38 0.020

Table 3. Ablation study on the input conditions for the Casper
model. The original inpainting condition utilizes a binary mask,
while the video condition involves zeroing out the removal re-
gion. Following ObjectDrop [11], the content within the removal
regions is preserved in the condition to enable the model to asso-
ciate effects outside the mask with the content inside. Finally, we
replace the binary mask condition with our proposed trimask to
mitigate ambiguity in effect removal within preservation regions.
The full impact of these input conditions may not be evident from
the evaluation of 10 synthetic background videos. We therefore
encourage readers to examine comparisons on real-world videos
in our supplementary HTML.

RGB video condition Mask condition PSNR↑ LPIPS↓
Original inpainting Masking removal area Binary 38.58 0.021
ObjectDrop approach [11] No masking Binary 38.24 0.020
Our condition No masking Our trimask 38.38 0.020

preservation regions. While the effectiveness of these input
conditions may not be readily apparent from the evaluation
of 10 synthetic background videos, we encourage readers
to examine comparisons on real-world videos in our sup-
plementary HTML.
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