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Supplementary Material

1. Preprocess Details
1.1. Segmentation Map Estimation

Segmentation maps are estimated using SAM2 [5], a precise
segmentation model designed for video inputs. A few pixel
points in the first frame are manually selected to indicate
objects of interest, after which SAM2 generates a segmen-
tation map for the frame and tracks the segmented objects
across all subsequent frames.

SAM2 often struggles with fine details such as fingers
and contact regions. To mitigate these issues, we apply a
guided filtering technique to refine the segmentation mask.
This improves boundary accuracy by fitting segmentation
maps to the boundaries observed in the frame images.

1.2. Keypoint Estimation

Keypoints of each object are estimated using Sapiens [2], a
human-centric vision model trained on large-scale datasets.
Since Sapiens is optimized for single-object images, its
multi-object keypoint estimation is unreliable. To address
this, each object is first cropped in every frame based on
the segmentation maps obtained from SAM2. Then, Sapiens
estimates the keypoints for each cropped object accurately
even in heavily occluded regions.

1.3. Pose Estimation

Recent off-the-shelf pose estimation models [1, 6] support
multi-object tracking from a monocular video with predict-
ing camera parameters. However, these models are not well-
suited for sparse view datasets where calibrated camera
parameters are provided. Additionally, in close interaction
scenes with heavy occlusion, tracking becomes less reliable.
To address these challenges, we select a multi-view consis-
tent pose estimation model MultiviewSMPLify-X [4, 7] as
our baseline. This model is designed to estimate SMPL-X
parameters of a single-object from multi-view images, and
we extend it to multi-object multi-view videos.

Learning SMPL-X parameters for multiple objects si-
multaneously destabilizes the training process. The first
frame in a video sequence typically consists of A-posed
objects without close interactions, making pose estimation
easier. Starting with the first frame, we perform pose esti-
mation, and for subsequent frames, we use the predicted pa-
rameters from the previous frame as initialization. To ensure
temporal consistency, we introduce a loss that measures the
difference between the optimized SMPL-X mesh vertices
from the previous frame and the predicted SMPL-X mesh

vertices in the current frame. This temporal consistency
mechanism helps stabilize training, particularly in views
with heavy occlusion due to close interactions, where the
information from prior frames proves beneficial for main-
taining reliable learning.

1.4. Pose Refinement

The accuracy of the pose estimation model is crucial for
the quality of the reconstructed avatars. Thus, we refine the
pose estimation results using surface ordering loss to re-
duce penetrations occuring in SMPL-X meshes. We render
the segmentation map of SMPL-X meshes and compute the
surface ordering loss. The regularization term of SMPL-X
parameter is also added to prevent the SMPL-X mesh from
being too deviated. This refinement enhances the quality of
the reconstructed avatars by reducing the penetrations be-
tween the SMPL-X meshes.

2. Details of Auxiliary Deformation Fields

GART [3] proposes to model deformation of clothes, which
is the limitation of SMPL-X-based deformation, by adopt-
ing latent bones and achieves fast training within 5 minutes.
Thus, we follow GART to deform our Gaussian avatar with
given per-frame SMPL-X parameters. GART represents de-
formation using the SMPL human avatar template with lin-
ear blend skinning (LBS). While SMPL-X effectively rep-
resents the geometry and deformation of the human body,
it has limitations in capturing the geometry and deforma-
tion of clothed humans. To address this, GART introduces
optimizable latent bones and their corresponding learnable
LBS weight, which are represented by MLP, to model the
deformation of clothing that is distant from the human body.
Additionally, GART learns a 3D grid volume that corrects
LBS weights, allowing for the representation of non-rigid
motion.
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