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Overview
In Sec. 1, we introduce the preliminary about equirectangular projection (ERP). In Sec. 2, we show additional experiment
results: qualitative comparison of depth and surface normal estimation and quantitative comparison of surface normal esti-
mation. Additionally, we show ablation studies, including a comparison of performance with respect to the number of SH
basis and the task-relevant index maps when using SH bases and learnable parameters as queries in the hierarchical attention
module, as discussed in Sec. 3. Finally, we provide an application of the HUSH framework in Sec. 4.

1. Preliminaries
In this section, we introduce the relationship between ERP and spherical coordinates that are equivalent to each other.
Equirectangular projection. ERP is a popular way to represent panorama images that project 3D information from a sphere
into a 2D image domain with severe distortions. This kind of projection method makes it easy to interpret the relationship
between the panorama image and the sphere. As shown in Fig. 1, we can map 2D image pixel point p to 3D point P from 2D
panorama image domain to the 3D space as follows:
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where W and H denote the resolution of the panorama image, ρ is the depth value of 3D point P , ϕ and θ indicate elevation
and azimuth angle, respectively. Using Eq. (1), we can represent pixel coordinate [u, v]T to the unit sphere coordinate [θ, ϕ]T

(ρ = 1) according to the image resolution [H,W ]. After representing the 2D pixel on the unit sphere, we can find the
corresponding points p and P ′ each relies on the panorama image and the unit sphere. Then, we can also match the 3D point
P with the points P ′ and p, because P ′ is the unit vector of the P (see Eq. (2)). Here, the transformation from the 3D point
P to the 2D pixel point p is also available vice versa.

2. Additional Experiments
Additional qualitative results. Here, we provide additional qualitative comparisons with other methods in terms of depth
estimation, and surface normal estimation. As shown in Fig. 6, HUSH outperforms previous methods [1, 2], especially on the
object boundaries (red boxes). Furthermore, we visualize the predicted depths in 3D space, as illustrated in Fig. 7. From these
results, we can observe that HUSH performs more accurately in planar regions than other methods. Figure 8 illustrates the
qualitative comparison of normal estimation results between HUSH and Elite360M*. Overall, we can observe that HUSH pro-
vides clearer structural details and more distinct object boundaries. Additionally, HUSH maintains better surface normal
consistency in plane regions, particularly in the Matterport3D [3] and Structured3D [8] datasets.

*Corresponding author.
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Figure 1. Transformation between ERP and sphere.

Quantitative results of surface normal estimation. We compare the surface normal estimation performance of HUSH
with Elite360M*. Table 1 shows that HUSH achieves competitive results on three benchmark datasets. Because HUSH is
a transformer-based framework, it takes a large number of training datasets to optimize the network and understand the
SH basis in terms of the 3D scene understanding. Hence, HUSH shows better performance on the two large-scale datasets:
Matterport3D and Structured3D, while Elite360M* shows better performance on the small dataset: Stanford2D3D dataset.
Although HUSH performs worse than Elite360M* on some metrics, we observe from Fig. 8 that using the SH query enables
a more effective understanding of the geometric information of the scene.

Dataset Method RMSE◦↓ Mean◦↓ Med◦↓ 11.5◦↑ 22.5◦↑ 30◦↑

Stanford2D3D Elite360M* 20.625 10.685 3.573 0.778 0.852 0.884
Ours (D+N) 20.961 11.191 3.832 0.746 0.838 0.878

Matterport3D Elite360M* 25.123 15.847 8.132 0.642 0.786 0.837
Ours (D+N) 24.863 15.035 7.065 0.663 0.797 0.847

Structured3D Elite360M* 20.621 8.798 1.079 0.850 0.889 0.907
Ours (D+N) 14.959 7.014 1.638 0.834 0.899 0.926

Table 1. Quantitative comparison of surface normal estimation on three benchmark datasets.

3. Ablation Studies
Comparison of SH basis numbers. We conduct an ablation study to validate the robustness of HUSH according to the
number of SH bases (i.e., the level of SH basis function). Table 2 shows that the performance of depth estimation remains
consistent regardless of the level l. However, the surface normal estimation shows improved performance as the level in-
creases. Furthermore, we analyze which SH bases are primarily utilized for each task, as shown in Fig. 2. From this figure,
we can see that each task predominantly relies on different SH bases (e.g., in the case of the Stanford2D3D dataset, depth
estimation employs overall SH bases, but surface normal estimation mostly uses SH bases around 20). Based on these obser-
vations, we ultimately set the level to 10 to achieve robust performance in both depth and surface normal estimation with the
flexibility to expand to other 3D scene understanding tasks.

SH basis level (l)
Depth metric Normal metric

Abs Rel↓ Sq Rel↓ RMSE↓ δ1↑ RMSE◦↓ Mean◦↓ Med◦↓ 11.5◦↑
2 (3 SH bases) 0.080 0.054 0.338 0.938 20.850 11.506 4.390 0.738

4 (10 SH bases) 0.082 0.055 0.337 0.936 20.972 11.734 4.840 0.734
6 (21 SH bases) 0.079 0.056 0.336 0.940 20.843 11.423 4.307 0.742
8 (36 SH bases) 0.076 0.055 0.337 0.940 21.021 11.643 4.462 0.733

10 (55 SH bases) 0.078 0.055 0.333 0.938 20.961 11.191 3.832 0.746

Table 2. Ablation study for the number of SH bases on the Stanford2D3D dataset.
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Figure 2. Dominant basis histogram. The first and second rows denote top-5 dominant SH basis index histograms on depth and surface
normal estimation tasks, respectively. In each graph, the x and y axes indicate the basis index and the frequency of each basis.

SH queries vs. learnable queries. We provide additional visual results of the SH index map to demonstrate the impact of
SH bases for the panoramic 3D indoor scene understanding task. We compare the SH query-based HUSH framework and
learnable (LR) query-based HUSH framework by checking the top-5 dominant SH bases on each task (depth and surface
normal estimation), as shown in Fig. 3. We further describe the effectiveness of the SH query on the 3D space in Fig. 4.
The SH query-based HUSH framework shows a geometrically better index map than LR query-based HUSH. In particular,
SH queries for surface normal estimation can behave like a plane segment module because the points with the same surface
normal usually lie in the same plane. In terms of depth estimation, SH queries discretize the scene into several concentric
spheres according to the indoor scene scale. Note that the 2D and 3D index map visualization shares the same SH basis index
colormap, which is described in Fig. 3.
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Figure 3. Task-relevant index map visualization. We select the top-5 dominant queries from the SH index map for each task. SH query
and learnable (LR) query indicate our HUSH framework trained with SH bases and learnable parameters as a query for hierarchical attention
module, respectively. We use a different colormap compared to the main paper (right part of the image). The black parts are unselected
areas.
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Figure 4. Task-relevant index map visualization on 3D. We show the task-relevant index maps on 3D space in the same scene as Fig. 3.
For visualization purposes only, we use the ground truth depth map and remove the ceiling area.



4. Application: Layout Estimation

Layout estimation training details. Here, we describe how we train layout estimation tasks to validate our HUSH framework
in case of its extensibility. To show the effect of our SH-integrated framework, we simply design a layout head and fine-tune
the HUSH framework with the layout head using a pre-trained HUSH. Our layout head consists of a single cross-attention
block and six linear layers that estimate the horizontal depth and room height from the depth and surface normals estimated
by pre-trained HUSH. We train our HUSH framework for 200 epochs on the MatterportLayout [9] dataset while other recent
layout estimation methods [4–7] trained for 1,000 or 2,000 epochs for optimization.

Layout estimation results. As shown in Table 3, our HUSH-based layout estimation framework shows comparable perfor-
mance even with a few training epochs compared to other layout estimation methods. Although HUSH shows lower perfor-
mance on 2DIoU and 3DIoU metrics, it achieves the best performance on the RMSE metric by fine-tuning the pre-trained
HUSH. Additional qualitative results are shown in Fig. 5.

Method Epoch 2DIoU(%) 3DIoU(%) RMSE δ1

LED2-Net [7] 1000 82.61 80.14 0.207 0.947
LGT-Net [4] 1000 83.52 81.11 0.204 0.951
DOPNet [5] 2000 84.11 81.70 0.197 0.950
Bi-Layout [6] 2000 84.56 82.05 - -

Ours 200 81.72 78.30 0.196 0.930

Table 3. Quantitative comparison of layout estimation on the MatterportLayout dataset.

Figure 5. HUSH framework-based layout estimation. Blue and green lines represent ground truth labels and our predictions respectively.
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Figure 6. Qualitative comparison of depth estimation.
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Figure 7. Qualitative comparison of depth estimation on 3D space.
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Figure 8. Qualitative comparison of surface normal estimation.
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