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A. Dataset Details

Below we report the data statistics of our Mosaic3D-5.6M
dataset, detail the data preprocessing steps, pipeline con-
figurations used for each dataset in our experiments, and
additional data pipeline experiments that utilize 3D instance
mask predictions in caption generation process.

A.1. Data Statistics

In Tab. A1, we report the statistics of our generated dataset,
including the number of scenes, RGB-D frames, generated
captions, and total tokens in captions for each source dataset.
Our dataset contains over 30K scenes, and 5.6M captions
with a total of 30M tokens across both real and synthetic
indoor environments.

Dataset # Scenes # Frames # Captions # Tokens Category

ScanNet [24] 1,513 2.5M 1.3M 7.2M Real
Matterport3D [14] 2,194 0.2M 0.7M 3.8M Real
ARKitScenes [7] 5,045 4.0M 2.4M 12.6M Real
ScanNet++ [99] 380 0.2M 0.2M 0.9M Real
Structured3D [107] 20,065 0.2M 1.0M 5.4M Synthetic

Total 29,197 7.1M 5.6M 29.9M

Table A1. Statistics of our generated dataset. We report the
number of scenes, RGB-D frames, generated captions, and total
tokens in captions for each source dataset.

In Tab. A2, we evaluate caption and 3D mask quality
across datasets using three metrics. The unique normalized

Train dataset Used Mask-Caption Quality ScanNet20 ScanNet200
ScanNet GT # Nouns Coverage Entropy f-mIoU f-mIoU Head Com. Tail

Datasets using only ScanNet as source
OV3D 7 2.5K 70.6 72.8 45.6 7.0 18.6 2.1 0.1
RegionPLC 7 1.4K 77.3 81.0 50.4 8.5 21.1 3.6 0.7
Mosaic3D-SN2 7 9.0K 92.6 60.7 65.0 13.0 30.2 6.9 1.4

Datasets using multiple sources
LEO X 2.6K 66.2 - 65.9 14.8 34.3 8.3 1.4
SceneVerse X 8.8K 60.0 - 67.3 13.6 32.4 7.3 0.8
EmbodiedScan X 0.3K 14.0 - 44.8 6.7 16.1 3.6 0.2
MMScan X 6.0K 48.0 - 64.1 11.7 26.1 7.9 0.7
Mosaic3D-5.6M 7 29.9K 93.7 - 68.1 15.7 32.9 10.8 2.7

Table A2. Dataset comparison. We analyze mask-caption qual-
ity metrics and annotation-free 3D semantic segmentation perfor-
mance of different training datasets, while keeping the same model
architecture (SpUNet-34C), CLIP model (Recap-CLIP), and loss
function (Contrastive).

nouns count measures the total number of unique normalized
nouns in captions, with higher count indicating richer and
more diverse captions. Mask coverage (%) calculates the
mean percentage of 3D points with associated captions per
scene, where higher coverage enables more effective training.
Mask entropy (bits) measures mask quality for datasets with
partial masks generated from multi-view images (i.e. OV3D,
RegionPLC, and Mosaic3D-5.6M) without using GT. It cal-
culates Shannon entropy of GT instance ID distributions
within each mask–higher entropy indicates that a mask con-
tains multiple GT instances, suggesting less accurate mask
boundaries. Mosaic3D-5.6M demonstrates superior caption
diversity and mask quality compared to both existing large-
scale 3D-text datasets and previous open-vocabulary 3D
segmentation datasets, validating its value as a new dataset.

A.2. Data Preprocessing

• ScanNet [24] To optimize computational efficiency while
maintaining adequate spatial coverage, we process every
20th RGB-D frame from each scene. Prior to processing,
we resize all RGB-D frames to 640⇥480 resolution.

• ScanNet++ [99] From the official dataset, we utilize the
“DSLR” image collection. Following repository guidelines,
we generate synthetic depth images using the reconstructed
mesh and camera parameters. After correcting for distor-
tion in both RGB and depth images and adjusting camera
intrinsics, we process every 10th frame through our an-
notation pipeline. Point clouds are generated via surface
sampling on the reconstructed meshes.

• ARKitScenes [7] We leverage the “3D Object Detection
(3DOD)” subset, utilizing its RGB-D frames and recon-
structed meshes. We use every 10th frame at low reso-
lution (256⇥192), and apply surface point sampling on
2A subset of Mosaic3D-5.6M using only ScanNet as source dataset.



mesh for point clouds.
• Matterport3D [14] We use preprocesed RGB-D frames

and point clouds provided by the author of Open-
Scene [68].

• Structured3D [107] We utilize RGB-D frames from both
perspective and panoramic camera. We utilize prepro-
cessed point clouds from the Pointcept [23] library, which
fuses multi-view depth unprojection with voxel downsam-
pling to get point clouds.

A.3. Pipeline Configurations

Our data generation pipeline leverages multiple Visual Foun-
dation Models to automate the data annotation process. Be-
low we detail the configuration of each model in our pipeline.
• RAM++ [41]: we utilize the official pretrained checkpoint
ram_plus_swin_large_14m available at https:
//huggingface.co/xinyu1205/recognize-
anything-plus-model.

• Grounded-SAM [76]: We employ the of-
ficial checkpoint of Grounding-DINO [59]
IDEA-Research/grounding-dino-tiny
accessed through HuggingFace at https :
/ / huggingface . co / IDEA - Research /
grounding-dino-tiny, together with SAM2 [75]
with checkpoint sam2_hiera_l, available at
https://huggingface.co/facebook/sam2-
hiera-large. For the postprocessing, we process the
output bounding boxes from Grounding-DINO using a
box score threshold of 0.25 and a text score threshold of
0.2. We then apply non-maximum suppression (NMS)
with an IoU threshold of 0.5 to remove redundancy.
To ensure meaningful region proposals, we filter out
excessively large boxes that occupy more than 95% of the
image area. These refined bounding boxes are then passed
to SAM2 for mask prediction.

• Osprey [103]: We utilize the official pretrained
sunshine-lwt/Osprey-Chat-7b checkpoint,
available at https : / / huggingface . co /
sunshine- lwt/Osprey- Chat- 7b. The gen-
eration parameters are set with a temperature of 1.0, top_p
of 1.0, beam search size of 1, and the maximum number
of new tokens to 512.

A.4. Additional Pipeline Experiments

We explore two additional data pipeline configurations that
use Segment3D [40] masks for segmentation while maintain-
ing Osprey [103] for captioning:
• Segment3D: We utilize complete Segment3D masks and

obtain captions by aggregating descriptions from multiple
projected views of each mask. This approach maintains
mask completeness but may result in multiple captions
being assigned to a single mask from different viewpoints.

System: A chat between a curious human
and an artificial intelligence
assistant. The assistant gives
helpful, detailed, and polite answers
to the human’s questions.
User: <image> This provides an overview
of the picture. Please give me a
short description of <mask><pos> ,
using a short phrase.

Table A3. Osprey region caption prompt. Osprey [103] utilizes
this prompt along with segmentation masks generated by Grounded-
SAM to produce descriptive captions for each region.

• Segment3D - Mosaic: We use partial Segment3D masks
as seen from individual views and generate captions based
on these view-specific projections. While masks are par-
tial, each mask-caption pair is aligned since it represents
the exact visible region from a specific viewpoint.

The results in Tab. A4 demonstrate that Segment3D - Mosaic
outperforms the baseline Segment3D approach, highlighting
the importance of precise mask-text pair alignment. How-
ever, both Segment3D variants are outperformed by our
Mosaic3D pipeline, which suggests that our combination
of RAM++ [41], Grounded-SAM [76], and SEEM [110]
provides superior segmentation quality.

Pipeline ScanNet20 [24] ScanNet200 [78]
f-mIoU f-mAcc f-mIoU f-mAcc

Segment3D [40] 50.6 76.6 8.3 19.1
Segment3D [40] - Mosaic 57.3 79.6 10.6 22.8
Mosaic3D 65.0 82.5 13.0 24.5

Table A4. Segment3D data pipeline evaluation results.

B. OV3D [48] Implementation Details

Since there is no publicly available code and data for
OV3D [48], we utilized our re-implemented version of
OV3D for data visualization (Fig. 2) and statistics (Fig. 4)
in the main manuscript. In this section, we provide detailed
explanations of our re-implementation results.

B.1. Caption Generation

OV3D [48] obtains entity-level text descriptions of an image
through multi-round conversations with LLaVA-1.5 [57]:
1. In the first round, LLaVA-1.5 is prompted to generate an

image caption describing the overall scene.
2. In the second round, LLaVA-1.5 is prompted to extract

entity names from the generated image caption.
3. In the final round, LLaVA-1.5 is prompted to generate de-

tailed entity descriptions for each extracted entity name.

https://huggingface.co/xinyu1205/recognize-anything-plus-model
https://huggingface.co/xinyu1205/recognize-anything-plus-model
https://huggingface.co/xinyu1205/recognize-anything-plus-model
https://huggingface.co/IDEA-Research/grounding-dino-tiny
https://huggingface.co/IDEA-Research/grounding-dino-tiny
https://huggingface.co/IDEA-Research/grounding-dino-tiny
https://huggingface.co/facebook/sam2-hiera-large
https://huggingface.co/facebook/sam2-hiera-large
https://huggingface.co/sunshine-lwt/Osprey-Chat-7b
https://huggingface.co/sunshine-lwt/Osprey-Chat-7b


During our implementation, we encountered inconsistencies
in LLaVA-1.5’s response formats. To ensure structured and
consistent entity-level text descriptions, we modified the
final prompt to request responses in JSON format, as shown
in Table A5, while maintaining the original prompts for the
first two rounds.

User: Please describe each of the
above things that appear in the image
with three different nouns or phrases.
Format your response as a JSON object
with the object names as keys and the
list of three nouns or phrases as
values. For example: {"entity name
A": ["description A1", "description
A2", "description A3"], "entity name
B": ["description B1", "description
B2", "description B3"],..}
Assistant: Here is the dictionary of
the concrete objects and background
classes in the image:

Table A5. Modified OV3D entity description prompt. We modi-
fied the original OV3D [48] prompt to request JSON responses for
consistent entity descriptions. For brevity, we omit the previous
conversation history that is included in the actual prompt.

In addition, our experimental results in Table A7 revealed
that LLaVA-1.5’s performance in entity name detection was
suboptimal, which significantly impacts OV3D’s overall
effectiveness. To overcome this limitation, we introduce
OV3D++, an enhanced version that uses RAM++ [41]’s ro-
bust tagging capabilities for entity detection while preserving
the original entity description process, as shown in Table A6.

B.2. Training Objectives

We experiment with three different training objectives to
reproduce OV3D [48]’s performance:

• DenseAlign: The original dense alignment loss pro-
posed in OV3D, which maximizes the similarity be-
tween text embeddings and point-wise visual features.

• Align: A simplified version of dense alignment
that computes similarity between text embeddings and
pooled visual features within the mask region.

• Contrastive: A contrastive learning objective pro-
posed in RegionPLC [98] that pulls matching text-
visual pairs closer while pushing non-matching pairs
apart in the embedding space.

For fair comparison, we use SparseUNet34C [21] as the
backbone network architecture across all experiments, which
is the same architecture used in Mosaic3D, and maintain
identical training configurations with the only variations
being in the training objectives and data generation pipelines.

User: This is a list of entities,
including concrete objects and
background classes, in the image:
<tag>. Based on your description and
the given list of entities, please
describe each entity with three
different nouns or phrases. Format
your response as a JSON object with
the object names as keys and the list
of three nouns or phrases as values.
For example: {"entity name A":
["description A1", "description A2",
"description A3"], "entity name B":
["description B1", "description B2",
"description B3"],..}
Assistant: Here is the dictionary of
the concrete objects and background
classes in the image:

Table A6. OV3D++ entity description prompt with tags. We
use RAM++ [41]’s image tagging output results as the placeholder
<tag> to leverage its robust entity detection capabilities. For brevity,
we omit the previous conversation history that is included in the
actual prompt.

B.3. Results

As shown in Table A7, our direct re-implementation (OV3D-
rep) is unable to fully reproduce the performance reported
in the original OV3D paper [48]. However, our improved
version (OV3D++) with RAM++ [41] tagging achieves bet-
ter results than the original paper in most metrics when
using Contrastive loss, except for f-mIoU on Scan-
Net20 [24]. Notably, Contrastive loss consistently out-
performs other loss functions across all settings, which mo-
tivates our choice to use Contrastive loss in Mosaic3D
as well. While OV3D++ shows significant improvements
over the baseline, it is ultimately surpassed by Mosaic3D,
demonstrating the effectiveness of Mosaic3D data engine in
generating more fine-grained and comprehensive captions.

C. Experimental Analysis

C.1. Model Scaling

Model capacity. Building on the data scaling analysis,
we additionally examine how model scales impact perfor-
mance. We systematically increase the model sizes of 3D
encoders while keeping other components fixed. We vary the
size of Sparse ConvUNet by changing the model depth and
widths following literature [36], where the smallest model,
SPUNet14A, has 11.1M trainable parameters, whereas the
largest variants, SPUNet101C, has 256M parameters. For
these experiments, we fix the training dataset to include Scan-
Net, ARKitScenes, and ScanNet++. As shown in Fig. A1,
increasing model capacity generally leads to better perfor-



Method Loss ScanNet20 [24] ScanNet200 [78]
f-mIoU f-mAcc f-mIoU f-mAcc

OV3D [48] DenseAlign 64.0 76.3 8.7 -

OV3D-rep DenseAlign 34.7 54.9 4.6 8.3
OV3D-rep Align 20.0 34.0 2.4 5.4
OV3D-rep Contrastive 45.6 69.8 6.9 14.3

OV3D++ DenseAlign 54.3 71.6 7.0 12.0
OV3D++ Align 22.5 37.6 3.1 5.6
OV3D++ Contrastive 58.4 76.7 9.2 16.7

Mosaic3D Contrastive 65.0 82.5 13.0 24.5

Table A7. Re-implementation and improvement of OV3D [48].

We present our re-implementation results of OV3D with three
different training objectives: DenseAlign, Align, and
Contrastive. OV3D-rep denotes our re-implementation, while
OV3D++ is our improved version using RAM++ [41] tagging.

mance, with diminishing returns after 100M parameters.
Multi-dataset synergistic learning with PPT [95]. Since
our Mosaic3D dataset combines multiple datasets with dif-
ferent capture settings and environments, there potentially
exists domain gaps between each subset that could hinder ef-
fective joint training. Recent work by Wu et al. [95] demon-
strates that adapting dataset-specific learnable prompts in
normalization layers can reduce negative transfer effects
when training on multiple point cloud datasets. Building
on this insight, we adopt their Point Prompt Training (PPT)
approach to ehance our joint training process. As shown
in Fig A1, models using PPT demonstrate better scaling
compared to standard joint training, confirming PPT’s effec-
tiveness in harmonizing multi-source training on our dataset.
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Figure A1. Model performance scales with model size. We
observe consistent improvements in open-vocabulary semantic seg-
mentation on ScanNet200 [78] as we increase the amount of train-
ing data. This shows the value of our large-scale data generation
pipeline in improving open-vocabulary 3D scene understanding.

C.2. Impact of Text Encoders

To analyze how different text encoders affect open-
vocabulary 3D segmentation performance, we evaluate var-
ious CLIP text encoders while keeping the 3D encoder

architecture (SPUNet34C) and other components fixed.
Table A8 presents the zero-shot performance on Scan-
Net20 and ScanNet200 benchmarks. We compare standard
CLIP text encoders including CLIP/B32, CLIP/B16, and
CLIP/L14@336px [71], as well as recently proposed vari-
ants like Recap-CLIP [55] and SigLIP [104].

Among all variants, Recap-CLIP achieves the best overall
performance with 68.1% f-mIoU on ScanNet20 and 15.7%
f-mIoU on ScanNet200. This represents a +0.3% and +0.9%
improvement over the base CLIP/B16 model respectively.
The superior performance of Recap-CLIP aligns with its
enhanced text-image alignment ability demonstrated in 2D
vision tasks. Based on these comprehensive experiments,
we select Recap-CLIP as our default text encoder for all
subsequent experiments. To ensure fair comparisons with
previous work, we maintain consistency by using the same
text encoder configuration when reproducing baseline re-
sults, as shown in Tables 1, 3, and A7. This standardization
enables direct performance comparisons and validates the
improvements achieved by our proposed approach.

CLIP Model ScanNet20 [24] ScanNet200 [78]
f-mIoU f-mAcc f-mIoU f-mAcc

CLIP/B16 [71] 67.1 83.8 14.4 27.7
CLIP/B32 [71] 67.8 84.5 14.8 26.5
CLIP/L14@336px [71] 64.2 81.9 14.9 27.7
SigLIP [104] 66.3 84.6 15.3 29.0

Recap-CLIP [55] 68.1 84.4 15.7 28.3

Table A8. Impact of CLIP text encoders on open-vocabulary 3D

semantic segmentation. We train our SPUNet34C architecture on
the full Mosaic3D-5.6M dataset (5 subsets) with different CLIP text
encoders while keeping other components fixed. Recap-CLIP [55]
achieves the best overall performance across both ScanNet20 and
ScanNet200 benchmarks, demonstrating the importance of text
encoder selection for zero-shot generalization.

C.3. Annotation-free 3D Referring Segmentation

To quantitatively analyze the attention between free-form
text queries and point features shown in Fig. 7, we leverage
the 3D referring segmentation annotations from ScanRe-
fer [15]. This allows us to evaluate how well our model’s
attention aligns with human-annotated referring expressions
in 3D scenes. Specifically, we evaluate our model’s zero-
shot performance on the ScanRefer validation set without
any fine-tuning on the 3D referring segmentation task. For
each referring expression in ScanRefer, we use it as a text
query to obtain attention maps between the query and point
features. We then threshold the cosine similarity scores to
obtain binary segmentation masks, where points with posi-
tive similarity scores (greater than 0) are considered as the
predicted region. The predicted masks are compared against
ground truth annotations using standard IoU metrics.



As shown in Table A9, our method outperforms both
OpenScene-3D [68] and RegionPLC [98], demonstrating
its superior ability to highlight relevant regions for free-
form text queries. These results demonstrate that our model
not only excels at semantic segmentation with simple class
names but also achieves superior zero-shot performance on
more complex free-form referring expressions, quantitatively
validating its effectiveness as a general-purpose 3D vision-
language foundation model.

Method OpenScene-3D† [68] RegionPLC[ [98] Mosaic3D

mIoU 3.1 3.7 5.3

Table A9. Annotation-free 3D referring segmentation on Scan-

Refer [15].
† and [ denote official checkpoints and our reproduc-

tions, respectively.

D. Additional Results

D.1. Quantitative Results

In Tab. A10, We conduct a comprehensive evaluation of our
model’s performance across different category frequencies
in ScanNet200. Following standard practice [78], we cat-
egorize labels into head, common, and tail groups based
on their occurrence frequency in the dataset. As shown in
Tab. A10, our approach achieves consistent improvements
across all category groups compared to previous methods.
Notably, we observe the relative gain is more substantial on
common and tail categories as we incorporate more training
datasets, highlighting the effectiveness of our multi-dataset
training strategy in learning robust features across varying
scene distributions.

Method ScanNet200 val mIoU (%)
Head Common Tail

OpenScene-3D† 16.4 2.6 0.2
RegionPLC[ 24.2 2.7 0.4

Mosaic3D
- SN [24] 30.2 6.9 1.4
- SN [24] + AR [7] 32.4 9.3 2.0
- SN [24] + AR [7] + SN2 [99] 33.3 10.0 2.6
- SN [24] + AR [7] + SN2 [99] + M [14] 32.9 10.0 2.5
- SN [24] + AR [7] + SN2 [99] + M [14] + S3D [107] 32.9 10.8 2.7

Table A10. Category-wise performance analysis on Scan-

Net200 [78]. † and [ denote official checkpoints and our reproduc-
tions, respectively.

D.2. Qualitative Results

In Fig. A2, we present additional qualitative visualizations
of our generated 3D mask-text pair datasets, where we care-
fully selected mask-text pairs to effectively demonstrate the
diversity and quality of our generated data. Furthermore,
in Fig. A3, we showcase attention maps for diverse text

queries across various scenes, which demonstrates that our
model can effectively attend to relevant regions in response
to different types of queries, ranging from object-centric
descriptions to more abstract concepts like affordances. In
Fig. A4, we present qualitative results of annotation-free
3D semantic segmentation on ScanNet200 [78]. Our model
shows promising results, particularly in the first scene where
it demonstrates an interesting behavior - while the ground
truth annotates an integrated chair-desk unit entirely as a
chair, Mosaic3D distinctly separates and predicts the desk
and chair components. This showcases a potential advantage
of our annotation-free approach to training 3D foundation
models, where the model can learn more nuanced semantic
distinctions that might be overlooked in manual annotations.



(a) scene0055_02 (ScanNet) (b) scene0128_00 (ScanNet)

(c) scene0211_01 (ScanNet) (d) scene0324_00 (ScanNet)

(e) 47333055 (ARKitScenes) (f) 42898477 (ARKitScenes)

Figure A2. More visualization of the 3D mask-text pairs in our Mosaic3D-5.6M dataset. A subset of mask-text pairs has been chosen
for better visualization.



“workstation”

“discarding”

“cozy”

“reading”

“washing”

“a portable storage 
carried on the back”

“a gateway for entering 
this room”

“a structure for holding 
and organizing items”

“a dark surface for writing 
and erasing chalked content”

“WC”

“a soft pillow for added 
comfort or support”

“a flat surface for placing 
items or working”

“a flat screen for displaying 
visual information”

“a cushioned furniture designed 
for comfort and relaxation”

“a container for collecting 
and disposing of waste”

Input Attention maps with free-form text queries

Figure A3. Attention visualization of Mosaic3D as a 3D foundational model. We observe that our model can highlight relevant regions
even without explicitly mentioning ScanNet [24, 78] class names in queries. The model also effectively attends to regions related to abstract
concepts like affordances (e.g., reading, discarding, washing).



Input Prediction Groundtruth

Figure A4. Qualitative results of annotation-free 3D semantic segmentation on ScanNet200 [78]. Despite being trained without ground
truth annotations, Mosaic3D shows competitive results on ScanNet200 [78].
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