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Supplementary Material

A. Implementation details

We provide additional implementation details in Section 4
(Experiments). The resolutions of the ground-view images
are 375 × 1242 and 432 × 816 for the KITTI and FMAVS
datasets, respectively. The experiments were conducted in
the HighlyAccurate [19] and SIBCL [30] settings for the
KITTI and FMAVS datasets, respectively.

Both the HighlyAccurate and SIBCL settings generate
initial poses by adding noise to the ground-truth pose. In
the HighlyAccurate setting, the initial pose is aligned to the
satellite image center. In contrast, the SIBCL setting aligns
the ground-truth pose to the satellite image center, which
risks overfitting the model by biasing predictions toward the
center. To ensure a fair comparison on the FMAVS dataset,
we modified the SIBCL setting by not aligning the ground-
truth pose to the center and reproduced previous works.

In the I branch, the search radius and step size of pose
candidates are set to one-fourth of the noise range of the
initial pose. This configuration generates two samples along
the lateral, longitudinal, and azimuth directions; resulting
in a total of six pose candidates. For example, if the noise
range of the initial pose is ±20m, ±20m, and ±10◦, the
search radius and step size are set to 10m, 10m, and 5◦, re-
spectively. Excluding the given pose, two samples are gen-
erated in each direction: +10m and −10m in the position
direction, and +5◦ and −5◦ in the orientation direction. To
prevent gradient explosion during training, the gradients of
the network parameters are clipped to a maximum ℓ2-norm
of 10.

B. Additional experiments

B.1. Ablation studies

Impact of the coefficients of the PID branches We eval-
uated the impact of the coefficients kp, ki, and kd of the PID
branches on the localization performance using the cross-
view KITTI dataset. In the conventional control theory, PID
controllers are highly sensitive to the coefficients, requir-
ing manual gain tuning to optimize the performance. In
contrast, the proposed PIDLoc optimizes these coefficients
through a learning-based approach, eliminating the need for
manual hyperparameter tuning.

Table F compares the performance of constant and learn-
able coefficients in the PID branches. The constant coef-
ficients (kp, ki, kd) are set to one and the learnable coef-
ficients (kp, ki, kd) are initialized to one. After the train-
ing, the learnable coefficients were tuned to 0.868, 0.930,
and 1.214, respectively. This learning-based tuning resulted

Learnable Lat. (%) ↑ Long. (%) ↑ Orien. (%) ↑
R@1m R@1m R@1◦

X 69.51 48.94 99.95
✓ 71.01 50.02 99.96

Table A. Comparison between constant and learnable coefficients
in the PID branches.

Branches kp ki kd
Lat. (%) ↑ Long. (%) ↑ Orien. (%) ↑

R@1m R@1m R@1◦

P 1.0 0.0 0.0 66.67 41.03 99.93
PI 1.0 1.0 0.0 68.36 48.13 99.81
PD 1.0 0.0 1.0 67.92 46.78 99.96
PID 1.0 1.0 1.0 69.51 48.94 99.95
PID 0.5 1.0 1.0 69.94 49.82 99.88
PID 1.5 1.0 1.0 68.41 48.40 99.95
PID 1.0 0.5 1.0 68.36 48.51 99.94
PID 1.0 1.5 1.0 68.45 49.41 99.95
PID 1.0 1.0 0.5 69.07 48.21 99.97
PID 1.0 1.0 1.5 68.40 49.93 99.89

Table B. Ablation analysis of the constant coefficients in the PID
branches.

in a lateral and longitudinal localization improvement of
1.50%p and 1.08%p compared with the constant coefficient
baseline. The learnable coefficients adaptively capture the
importance of each branch, improving the overall localiza-
tion performance.

Table B compares the impact of the coefficients on lo-
calization performance by fixing their values to some con-
stants. The PID branches consistently improve position
performance compared with the P, PI, and PD branches,
demonstrating the effectiveness of including ID branches
across various coefficient settings. Notably, configurations
of (kp = 0.5, ki = 1.0, kd = 1.0) and (kp = 1.0, ki = 1.0,
kd = 1.5) indicate that reducing kp improves lateral per-
formance while increasing kd improves longitudinal perfor-
mance. This result is consistent with the learnable coeffi-
cients of (kp = 0.868, ki = 0.930, kd = 1.214) in Ta-
ble F, demonstrating that the learnable coefficients effec-
tively capture the balance among the PID branches.

Impact of pose candidates In Table C, we evaluated the
impact of the number of pose candidates in the I branch
under two initial pose error settings: ±20m and ±10◦, and
±30m and ±15◦. The number of pose candidates is set to
zero, two, and four per direction. The case with zero candi-



Pose candidates Pose noise Lat. (%) ↑ Long. (%) ↑ Orien. (%) ↑
per direction R@1m R@1m R@1◦

0 ±20m,±10◦ 67.90 46.80 99.91
2 ±20m,±10◦ 71.01 50.02 99.96
4 ±20m,±10◦ 69.21 51.24 99.91

0 ±30m,±15◦ 60.60 29.37 97.46
2 ±30m,±15◦ 62.12 37.08 97.54
4 ±30m,±15◦ 62.24 38.94 98.46

Table C. Ablation analysis of the number of the pose candidates in
the I branch.

Iterations Lat. (%) ↑ Long. (%) ↑ Orien. (%) ↑ Inference time
R@1m R@1m R@1◦ (ms)

1 56.48 32.05 99.92 101
3 70.13 47.68 99.95 225
5 71.01 50.02 99.96 374
7 72.45 51.24 99.62 473

Table D. Impact of the iterations of the PIDLoc on the localization
performance.

date corresponds to the PD branches.
Table C demonstrates that increasing the number of pose

candidates significantly enhances localization performance.
Specifically, under the ±30m initial noise conditions, in-
corporating two and four pose candidates per direction im-
proves longitudinal performance by 7.71%p and 9.57%p,
respectively, compared with the case of no pose candi-
dates. The process of sampling pose candidates adds ap-
proximately 22ms of inference time and 0.15GB of GPU
memory per candidate. These results indicate that incorpo-
rating more pose candidates enables the model to integrate
global context effectively, but a balance is required to man-
age computational resources.

Impact of iterations In Table D, we evaluated the im-
pact of the iterations on localization performance using
the cross-view KITTI dataset. The proposed PIDLoc iter-
atively refines the estimated pose toward the ground-truth
pose by leveraging the cross-view features at the given pose.
When increasing iterations from one to three, the recall
rates were improved by 13.65%p and 15.63%p in the lateral
and longitudinal directions, respectively. However, Table D
shows that performance gains diminish beyond five itera-
tions, as the refinement process converges and additional it-
erations rarely provide new information for further pose ad-
justments. To balance the performance with computational
efficiency, we adopt the five iterations as the default config-
uration.

Branch Parallel Inference time Memory
candidates (ms) (GB)

P branch - 182 5.61
PD branches - 251 6.41
PI branches X 370 6.53
PI branches ✓ 234 7.13

PID branches X 510 7.26
PID branches ✓ 374 7.32

Table E. Computational complexity analysis of the proposed PID-
Loc.

B.2. Computational resources

We analyzed the computational complexity of the PID-
Loc across different PID-branch configurations. The com-
putational complexity was measured using inference time
per image and GPU memory usage of the PIDLoc on an
NVIDIA RTX A5000 GPU and an AMD EPYC 7453 28-
Core Processor CPU. When performing iterative sampling
of pose candidates, the inference time for the PID branches
is 510ms per image, which is comparable to the 500ms
reported for HighlyAccurate [19]. When performing GPU
parallel processing for pose candidate sampling, the infer-
ence time for the PID branches is reduced to 374ms per
image, achieving 26.67% reduced inference time with only
0.83% increase in GPU memory usage. Notably, both iter-
ative and parallel sampling methods use the same approach
for selecting pose candidates, ensuring consistent recall
rates and localization performance. These results demon-
strate the computational efficiency of the PIDLoc, enabling
real-world applications such as autonomous navigation and
robotics.

C. Qualitative analysis

C.1. Pose update on the diverse initial poses

Figure A illustrates the position adjustment of the PID
branches at a given pose. The P branch only focuses on the
given pose, resulting in the convergence to a local optimum.
Specifically, the P branch often predicts the position in the
wrong direction or fails to update the pose when trapped in
a local optimum. In contrast, the I branch incorporates the
wider field of view (FoV) from the pose candidates, making
them converge to the global optimum. The I branch suc-
cessfully updates the position toward the ground-truth pose
for most initial poses. However, it struggles to accurately
update poses in regions near the ground-truth pose. The D
branch utilizes feature difference gradients to update the po-
sition with high precision. The feature difference gradients
capture subtle feature variations near the ground-truth pose,
enabling accurate pose updates.
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Figure A. The PIDLoc performs localization by incorporating local, global, and fine-grained contexts. The green circular sector represents
the ground truth pose. The blue arrow represents the position adjustment of the given pose during the single iteration. The length of the
blue arrow indicates the position update size. Similar to existing methods, the P branch relies solely on the given pose, often resulting in
the convergence to a local optimum. The I branch incorporates global context from diverse poses, enabling position updates toward the
ground-truth pose across a wide range of initial poses. The D branch leverages gradients of feature differences to perform fine-grained pose
adjustments.

C.2. Visualization of localization results

In Figure B, we compared the SIBCL [30] with our PID-
Loc under an initial pose error of ±30m and ±15◦ on the
KITTI dataset. Figures B (a)-(d) illustrate examples with
repetitive patterns along the lateral and longitudinal direc-
tions. In case (a), where the initial lateral pose error is sig-
nificant, the SIBCL only finds a local optimum. In contrast,
the PIDLoc accurately finds the global optimum by avoid-
ing buildings that resemble roads. Cases (b)-(d) show that
the SIBCL accurately estimates the lateral direction but the
estimation converges to a local optimum in the longitudi-
nal direction. This limitation arises from its restricted FoV
when dealing with repetitive patterns along the longitudi-
nal direction. In contrast, the PIDLoc leverages global and
fine-grained contexts, enabling accurate localization even in

Positional Lat. (%) ↑ Long. (%) ↑ Orien. (%) ↑
Embedding R@1m R@1m R@1◦

X 66.06 42.37 99.88
✓ 71.01 50.02 99.96

Table F. Comparison of SPE with and without positional embed-
ding.

challenging scenarios with repetitive patterns, such as build-
ing facades and vegetation rows.



SI
B

C
L 

[2
8]

PI
D

L
oc

(O
ur

s)

(a) (c)(b) (d)

Figure B. Visualization of localization results. The red, green, and blue circular sectors represent the current, ground-truth, and predicted
pose, respectively. The blue line represents the iterative trajectory of predicted poses and the blud dot represents the predicted pose at each
iteration. Compared with SIBCL [30], PIDLoc more accurately finds the global optimum in a challenging environment with repetitive
patterns.
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