
Recovering Dynamic 3D Sketches from Videos

Supplementary Material

A. Methodological Details

A.1. Point Cloud Rasterization

To rasterize the point cloud to an image plane in Sec. 3.2,
we first project the 3D points P3D = {Pi} onto the 2D
space P2D = {P̃i}. For each pair of i-th normalized grid
point and j-th point of the normalized point cloud P̂2D to
image dimensions, we use the Gaussian function to compute
a rendered intensity Jij :
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where Dij is the Euclidean distance between two points and
ωj indicates the point size factor that controls the contribu-
tion area of each point.

We dynamically adjust ωj based on the depth of the point
{dj} to account for perspective projection effects. Points
farther from the camera are rendered with smaller sizes,
following standard 3D rendering principles. Using the nor-
malized depth {d̂j} = { dj→dmin

dmin→dmax
}, each point size ωj is

computed as:
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µ
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↑ d̂j ↑ ε, (14)

where µ and ε denote the scaling and deblurring factor, and
W , H are the image width and height. We set µ = 10 and
ε = 0.5.

We aggregate the Gaussian contributions from all point
cloud points to each grid point to generate the final rendered
image. The intensity value for each pixel is computed by
summing these contributions. We then normalize the in-
tensities by dividing by the maximum value, ensuring the
final image J ↓ RH↑W values fall within an appropriate
range for visualization or processing. This process can be
expressed as the following equation:
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The results can be shown in Figs. C and F. Note that each
guidance view in Fig. C is rasterized into a 100↑ 100 reso-
lution image, which represents the actual resolution used for
generating motion guidance in synthetic scenes.

A.2. Effect of the Suppression Function ϑ(·)

As described in Sec. 3.3, we adjust the suppression func-
tion ϑ(·) to prevent unintended stroke movements in sketch
synthesis. Figure A shows the effect of this function. We

Figure A. Effectiveness of the function for suppression ω(·). With-
out motion suppression, we observe noisy stroke movement at
different time steps (t1 and t2) even if there are no motions.
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Figure B. Network architecture. All networks in the framework
share the same architecture. Nout indicates the dimension of the
output, which is 4 in MR, and 3 in the others.

observe that the model struggles to suppress undesired stroke
movements even when no motion occurs. This demonstrates
that our full approach achieves higher performance in ex-
tracting core motions.

B. Implementation Details

B.1. Network Architecture

Our network architecture, illustrated in Fig. B follows a
consistent MLP structure across all components in Sec. 3.2
and 3.3, adopting a similar design to that proposed by [34].
Input is the concatenation of positional encoding of time
ϖt and positions ϖx, and each linear layer, except for the
final layer, outputs a 256-dimensional feature vector. The
network MR yields outputs in RN↑4, while other networks
produce output vectors in RN↑3. MR outputs quaternions
for each stroke’s rotation, which are subsequently converted
to rotation matrices for stroke deformation.
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Figure C. Different resolution through processing stages. Our
method gradually increases resolution according to stages to com-
pute the location and deformation of strokes.

B.2. Optimization Details

The learning parameters differ between reconstructing syn-
thetic datasets and real-world scenes. For synthetic scenes,
we set the frequency value L = 10 for both temporal and
spatial positional encoding. For real scenes presented in
Fig. 9, we use L = 8 for temporal and L = 10 for spatial
encoding. Learning rate values are also slightly different
in synthetic and real scenes. For the former, in drawing
process as described in Sec. 3.3, we apply a learning rate
of 5.0↑ 10

→4 to MT and MR, and 1.0↑ 10
→3 to all other

parameters. For the latter, during sketch reconstruction, we
apply a learning rate of 5.0↑ 10

→4 to the canonical stroke
positions, 1.0 ↑ 10

→4 to MT and MR, and 2.5 ↑ 10
→4 to

ML. We set the learning rates lrpcd = 1.0 ↑ 10
→3 and

lrmlp = 5.0 ↑ 10
→4 to optimize the canonical point cloud

(i.e., the point cloud before network-based shifting) and the
motion guidance function detailed in Sec. 3.2 for all scenes.
In addition, during learning motion guidance, to embed core
motion information into the network, we initialize a canoni-
cal point cloud at t = 0 and reset the network parameters in
the middle of the process.

Meanwhile, our framework is structured to gradually in-
crease resolution as the optimization process progresses. As
shown in Fig. C, We initially obtain motion guidance at quar-
ter resolution of the target image size. Then, in the coarse
stage of sketch synthesis, we render strokes into a 50% of the
full resolution. We finally get moving sketches by optimiz-
ing the full resolution of the target frame size. For instance,
for synthetic scenes, we first learn guidance at 100 ↑ 100

resolution and then optimize the per-stroke transformation
using 200 ↑ 200 frames. The final output produces sketch
frames at 400↑ 400 resolution.

Per-frame
Chamfer (↔)

Motion velocity
distance (↑10

→3
) (↔)

4DGS†
0.286± 0.057 4.24± 2.71

Deformable 3DGS†
0.269± 0.071 4.01± 2.67

SC-GS†
0.289± 0.053 3.99± 2.65

Liv3Stroke (Ours) 0.252± 0.049 4.16± 2.34

Table A. Quantitative results of 3D motion guidance accuracy of
†GS-based works with filtering based on the opacity value.

Figure D. The effects of using different numbers of strokes. When
reconstructing a sketch video, we allow users to set Nstrokes. More
strokes produce detailed sketches, while fewer strokes yield abstract
ones.

C. Additional Results

We provide results of all rendered synthetic scenes in Fig. F.
Compared to other existing works, our framework can rep-
resent diverse movements and key features of the view-
consistent structure directly from RGB video frames. We
visualize guidance views at the full target image resolution
for better clarity. We highly recommend finding videos in
the supplementary material to see the whole movement of
each scene.

C.1. Quantitative Results of the Motion Guidance

We present additional quantitative results of the motion guid-
ance that we obtained from Sec. 3.2 and filtered results of
GS-based dynamic reconstruction works [15, 44, 47] accord-
ing to the opacity value with a threshold of ϱ = 0.5. Table A
and Tab. 1 (b) of the main paper shows our method’s capabil-
ity to capture meaningful 3D motion information, although
it does not pursue realistic reconstruction.

C.2. Results of Different Number of Strokes

We provide results to show the effect of the number of strokes
as in Fig. D. Like [5] and [41], we can control abstraction
levels of sketches by adjusting the number of curves. With
a higher number of strokes, we can capture more detailed
features, while fewer strokes result in more abstract repre-
sentations.

C.3. Limited Multi-View Information

We provide results under limited multi-view information in
varied conditions. From a frontal view, we captured frames
along a circular trajectory around the object, collecting 100
frames over an angle ς(

↓
) while maintaining a constant dis-



Figure E. Results of limited multi-view information. (a) Experimental setup for data collection. We followed a circular path around the
object to capture frames, beginning from the frontal view (marked with a green arrow). (b) Results of the motion guidance and sketch under
different angles. Our approach can achieve 3D motion sketch representation with limited yet sufficient viewpoint information (ε → 45), even
when the motion guidance exhibits noise, such as at ε = 45.

Method Novel views Fixed views
Motion Structure Motion Structure

CLIPasso 3.32 3.08 2.87 2.70

Sketch Video Syn. 2.66 2.64 3.93 3.77

Sugg. Contours 4.26 4.29 3.82 3.90

Liv3Stroke (Ours) 3.32 3.08 3.21 2.94

Table B. User study results. Note that “Motion” denotes the eval-
uation of how well the result describe the desired movement, and
“Structure” is the score of how well it contains key features of the
3D structure.

tance from the center. The detailed experimental setup is
visualized in Fig. E (a).

Our approach renders 3D sketches of the object in motion
with sparse yet adequate viewpoint information, as illustrated
in Fig. E (b). Additionally, we find that our method can
roughly capture the 3D key structure of the object even when
the motion guidance exhibits noise, such as at ς = 45.

C.4. User study

We provide a questionnaire to evaluate the perceptual impli-
cation of generated sketches. Participants rated the sketches
on a five-point scale (1-5), evaluating them from both novel
camera viewpoints and the fixed perspective. The rating
criteria were: (1) how effectively the sketch captures the
motion and (2) how well it conveys the 3D structure of the
target object.

Table B summarizes the answers of 44 participants. Over-
all, Suggestive Contours [6] achieves the highest scores
across all metrics, which can be attributed to its direct con-
tour extraction from 3D meshes, as illustrated in Fig. 6.
Unlike other methods that rely on image-based processing,
this approach results in higher evaluation scores. For novel
views, LiveStroke performs comparably with CLIPasso [41].
While Sketch Video Synthesis [50] has a higher score in

the fixed views, it struggles to effectively capture 3D geo-
metric features and motion characteristics when evaluated
from moving camera perspectives. LiveStroke exhibits only
minimal performance decrease when transitioning from the
novel perspectives to the fixed view, demonstrating con-
sistent performance regardless of the viewing perspective.
This stability distinguishes our approach from others, which
shows significant performance variations between different
viewpoints.



Figure F. Results of synthetic scenes. Our approach can represent diverse motions by using view-consistent deformable 3D strokes.


