
SOAP: Vision-Centric 3D Semantic Scene Completion with Scene-Adaptive
Decoder and Occluded Region-Aware View Projection

Supplementary Material

S-1. More Ablation Studies for Occluded
Region-Aware Projection

We introduce the occluded region-aware view projection
(OAP), which refines features in occluded regions through
3D deformable cross-attention between the initial voxel fea-
tures F̃3D

i and the historical voxel features Fhist
i . To vali-

date the effectiveness of OAP, we design several approaches
for the view projection as in Figure S-1.
Method 1. The first method splits the voxel space into two
regions: invisible and the other regions as in Figure S-1(a).
Then, it fills the invisible regions with the historical voxel
features, while the other regions are filled with the sum of
the initial voxel features and the historical voxel features.
Method 2. The second method also splits voxel space into
invisible and the other regions as in Figure S-1(b). Then, it
fills the invisible regions with the historical voxel features,
while features of the other regions are refined through 3D
deformable cross attention (DCA) between the initial voxel
features and the historical voxel features.
Method 3. Similar to the proposed OAP, the third method
first identifies the occluded regions within the initial voxel
features. It then splits the other remaining regions into in-
visible and visible regions as in Figure S-1(c). It recon-
structs invisible voxel features Finv

i and visible voxel fea-
tures Fvis

i following Equation (4) and Equation (5), respec-
tively, as done in OAP. In contrast, it reconstructs occluded
voxel features Focc

i by simply adding the initial voxel fea-
tures and the historical voxel features.
Experimental Results. Table S-1 compares the alterna-
tive view projection approaches (Methods 1-3) with the
proposed OAP. When comparing Method 1 to Method 2
and Method 3 to OAP, we observe that incorporating de-
formable cross-attention between the initial and historical
voxel features yields improvements in both mIoU and IoU
scores, surpassing the performance of simple addition oper-
ations. Also, Method 3 provides better performance than
Method 1, while Method 2 degrades model performance
compared to the proposed OAP. These results underscore
the critical importance of identifying occluded regions dur-
ing view projection for achieving accurate 3D SSC.

S-2. SOAP-ResNet50

We further evaluate the performance of SOAP us-
ing ResNet50 [3] as the image encoder on the Se-
manticKITTI [1] and SSCBench-KITTI360 test datasets.
Table S-2 and Table S-3 present quantitative comparisons of

F Filling

Addition

(a) Method 1

Invisible

F

the Others

3D 

DCA

(b) Method 2

Invisible

F

the Others

(c) Method 3

Invisible

F

Occluded Visible

Voxel 

Encoder

(d) OAP

Invisible

F

Occluded Visible

3D 

DCA

Voxel 

Encoder

Voxel 

Encoder

Voxel 

Encoder

Figure S-1. Alternative approaches for occluded region-aware
view projection (OAP).

Table S-1. Ablation study for occluded region-aware projection on
the SemanticKITTI validation set.

SC SSC
IoU mIoU

Method 1 45.11 18.25
Method 2 45.72 18.74
Method 3 45.83 18.94
OAP 47.24 19.21

the proposed SOAP, employing either EfficientNetB7 [10]
or ResNet50 [3], and other state-of-the-art methods on the
SemanticKITTI and SSCBench-KITTI360 test datasets, re-
spectively. For clarity, we denote SOAP with the ResNet50
image encoder as SOAP-ResNet50. Notably, SOAP-
ResNet50 achieves the highest IoU and mIoU scores com-
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Table S-2. Semantic scene completion results on SemanticKITTI test set. † represents methods that use temporal information. We
categorize all methods based on their image encoders. We highlight the best results in bold and the second best results in underline.
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ResNet50
VoxFormer† [7] 43.21 13.41 54.1 26.9 25.1 7.3 23.5 21.7 3.6 1.9 1.6 4.1 24.4 8.1 24.2 1.6 1.1 0.0 13.1 6.6 5.7
Symphonies [5] 42.19 15.04 58.4 29.3 26.9 11.7 24.7 23.6 3.2 3.6 2.6 5.6 24.2 10.0 23.1 3.2 1.9 2.0 16.1 7.7 8.0
HASSC† [11] 42.87 14.38 55.3 29.6 25.9 11.3 23.1 23.0 2.9 1.9 1.5 4.9 24.8 9.8 26.5 1.4 3.0 0.0 14.3 7.0 7.1
SGN† [8] 45.42 15.76 60.4 31.4 28.9 8.7 28.4 25.4 4.5 0.9 1.6 3.7 27.4 12.6 28.4 0.5 0.3 0.1 18.1 10.0 8.3
SOAP-ResNet50† 47.54 18.72 63.2 36.6 35.8 16.3 30.3 28.4 4.3 4.6 2.9 4.9 31.6 15.0 33.2 2.3 0.9 0.1 20.6 11.5 13.3
EfficientNetB7
TPVFormer [4] 34.25 11.26 55.1 27.2 27.4 6.5 14.8 19.2 3.7 1.0 0.5 2.3 13.9 2.6 20.4 1.1 2.4 0.3 11.0 2.9 1.5
NDC-Scene [13] 33.87 11.55 56.2 28.7 28.0 5.6 15.8 19.7 1.8 1.1 1.1 4.9 14.3 2.6 20.6 0.7 1.7 0.4 11.2 3.2 1.7
SurroundOcc [12] 34.72 11.86 56.9 28.3 30.2 6.8 15.2 20.6 1.4 1.6 1.2 4.4 14.9 3.4 19.3 1.4 2.0 0.1 11.3 3.9 2.4
OccFormer [15] 34.53 12.32 55.9 30.3 31.5 6.5 15.7 21.6 1.2 1.5 1.7 3.2 16.8 3.9 21.3 2.2 1.1 0.2 11.9 3.8 3.7
LowRankOcc [16] 38.47 13.56 52.8 27.2 25.1 8.8 22.1 20.9 2.9 3.3 2.7 4.4 22.9 8.9 20.8 2.4 1.7 2.3 14.4 7.0 7.0
HTCL† [6] 44.23 17.09 64.4 34.8 33.8 12.4 25.9 27.3 5.7 1.8 2.2 5.4 25.3 10.8 31.2 1.1 3.1 0.9 21.1 9.0 8.3
SOAP† 46.09 19.09 63.6 36.2 36.8 17.2 28.7 28.9 3.3 5.0 5.3 7.0 29.8 15.1 32.3 3.7 2.3 0.2 22.5 11.7 13.1

Table S-3. Semantic scene completion results on the SSCBench test set. † represents methods that use temporal information. We categorize
all methods based on their image encoders. We highlight the best results in bold and the second best results in underline.
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ResNet50
VoxFormer† [7] 38.76 11.91 17.8 1.2 0.9 4.6 2.1 1.6 47.0 9.7 27.2 2.9 31.2 5.0 29.0 14.7 6.5 6.9 3.8 2.4
Symphonies [5] 44.12 18.58 30.0 1.9 5.9 25.1 12.1 8.2 54.9 13.8 32.8 6.9 35.1 8.6 38.3 11.5 14.0 9.6 14.4 11.3
SGN† [8] 47.06 18.25 29.0 3.4 2.9 10.9 5.2 3.0 58.1 15.0 36.4 4.4 42.0 7.7 38.2 23.2 16.7 16.4 9.9 5.8
SOAP-ResNet50† 48.48 20.17 30.0 3.3 4.4 7.8 6.0 5.9 60.7 17.5 40.1 6.3 45.5 10.9 40.9 24.9 17.2 19.4 12.9 9.7
EfficientNetB7
TPVFormer [4] 40.22 13.64 21.6 1.1 1.4 8.1 2.6 2.4 53.0 12.0 31.1 3.8 34.8 4.8 30.1 17.5 7.5 5.9 5.5 2.7
OccFormer [15] 40.27 13.81 22.6 0.7 0.3 9.9 3.8 2.8 54.3 13.4 31.5 3.6 36.4 4.8 31.0 19.5 7.8 8.5 7.0 4.6
SOAP† 48.12 20.92 29.9 5.6 7.8 14.4 7.6 6.1 60.9 17.4 40.3 5.4 45.3 10.6 40.5 24.8 16.8 21.0 12.6 9.9

pared to ResNet50-based methods on both SemanticKITTI
and SSCBench-KITTI360. These results demonstrate that
SOAP is effective, regardless of the image encoder em-
ployed.

S-3. Ablation Studies for Historical Frames

In Table S-4, we analyze the impact of the number of his-
torical frames P on the overall model performance. We
observe that SOAP produces similar performance when
P > 1. We set the number of historical frames to P = 4,

which provides the best trade-off between performance and
efficiency.

S-4. Occluded Region Detection

The proposed SOAP utilizes the occlusion map Oi to distin-
guish the occluded regions from the voxel space. Therefore,
the accuracy of the occlusion map is critical to overall SSC
performance. To evaluate the occlusion detection capability
of occlusion map Oi, we establish ground-truth occlusion
labels Ôi, where occluded regions are defined as those lo-
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Table S-4. Ablation study on the number of frames P in the his-
torical voxel generation.

P
SC SSC
IoU mIoU

1 46.39 18.80
2 47.15 19.14
3 47.11 19.17
4 (current setting) 47.24 19.21
5 47.29 19.21

Table S-5. Occlusion detection accuracy of O3D
i on the Se-

manticKITTI validation set.

IoU Recall Precision
75.62 75.90 99.52

cated behind ground-truth depth bins derived from the pro-
jected LiDAR point clouds. Table S-5 reports the occlusion
recall, precision, and IoU between the predicted occlusion
map φ(Oi) and the ground-truth occlusion labels φ(Ôi)
within the voxel space. Remarkably, the occlusion map Oi

achieves a precision of 99.52, which indicates that the most
identified occluded regions align with the ground-truth oc-
cluded regions. This highlights OAP’s ability to refine voxel
features, resulting in superior 3D SSC performance. Addi-
tionally, the occlusion map Oi achieves reliable recall and
IoU performance.

S-5. Results Using Monocular Depth
We also evaluate the performance of SOAP using the
monocular depth model [2], which is employed in other
methods [5, 7, 14]. Table S-6 presents the results on the
SemanticKITTI validation set. The scores of other meth-
ods [5, 7, 14–16] are obtained from their respective papers.
We observe that SOAP with monocular depth still outper-
forms other methods with significant margins, demonstrat-
ing its superior adaptability.

S-6. Scalability of OAP
Incorporation OAP into other models: To verify the scal-
ability of the occluded region-aware view projection (OAP),
we integrate the proposed OAP into OccFormer and SGN.
Table S-7 below reports that OAP significantly enhances the
performance, even when SGN inherently uses temporal in-
formation.

S-7. Ablation Study for Scene-Adaptive De-
coder

Novelty-Based Token Selection. In this study, we intro-
duce the novelty-based token selection, which leverages to-
ken scores as S = Scls + αSnov, where Snov is novelty

Table S-6. Comparison on the stereo and monocular settings. We
replace the stereo depth estimator [9] with the monocular depth
model [2] for the monocular setting.

Mehtod
Stereo Mono

IoU mIoU IoU mIoU
VoxFormer [7] 44.15 13.35 38.08 11.27
Symphonies [5] 41.92 14.89 38.37 12.20
SGN [8] 46.21 15.32 41.87 12.91
OccFormer [15] - - 36.50 13.46
LowRankOcc [16] - - 37.85 14.21
SOAP 47.24 19.21 43.64 16.62

Table S-7. The scalability of the proposed OAP.

Method OccFormer + OAP SGN + OAP
IoU 36.50 46.60 46.21 47.07

mIoU 13.46 17.18 15.31 17.04

scores and α is its balancing parameter. Table S-8 compares
the performance of SOAP with respect to the novelty score
Snov and its corresponding balancing parameter α. The
result without Snov means the token scores are computed
solely by the classification scores S = Scls. The model ex-
hibits similar performance across different values of α, with
the best performance observed at α = 0.2. Also, token se-
lection without novelty scores results in slight reduction in
the performance.
tSNE Visualization of the Semantic Repository. Fig-
ure S-2 illustrates the t-SNE visualization of tokens in the
semantic repository R across update iterations, under (a)
S = Scls and (b) S = Scls + αSnov. Different colors rep-
resent different semantic classes. The feature space of R
progressively exhibits clear separation among different se-
mantic classes, indicating that the semantic repository con-
tains distinct features for each semantic class. However, we
also observe that updating with S = Scls tends to select to-
kens with similar features for each semantic class, leading
to reduced semantic diversity. In contrast, updating with
the novelty scores S = Scls+αSnov preserves the semantic
diversity of the semantic repository R.
Number of Representative Tokens. We also analyze
the impacts of the number of representative tokens K on
the overall model performance. As shown in Table S-9,
SOAP demonstrates stable performance even with smaller
K. Even though both IoU and mIoU are improved with the
increase of the K, we select K = 10 as our current setting,
balancing the trade-off between performance and efficiency.
Number of Repetitions. Table S-10 analyze the impact
of the repeated number of the scene-adaptive decoder. The
results indicate that SOAP achieves robust stability across
different configurations for the scene-adaptive decoder. We
pick the repeated numbers 9 that provide the best trade-off
between performance and efficiency.
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(a) 

(b) 

: Iterations

Figure S-2. t-SNE visualization of semantic tokens in the semantic repository R according to update processes with (a) S = Scls and (b)
S = Scls + αSnov. Different colors represent different semantic classes.

Table S-8. Ablation study for token scores S on the Se-
manticKITTI validation set.

Token scores S α
SC SSC
IoU mIoU

Scls - 47.11 19.07
Scls + αSnov 0.1 47.15 19.18
Scls + αSnov 0.2 47.24 19.21
Scls + αSnov 0.4 47.11 19.19
Scls + αSnov 0.6 47.20 19.13

Table S-9. Ablation study for the number of representative tokens
K in the semantic repository on the SemanticKITTI validation set.

K
SC SSC
IoU mIoU

5 47.18 19.08
10 (current setting) 47.24 19.21
15 47.26 19.23
20 47.26 19.23

Table S-10. Ablation study for the repeated number of scene-
adaptive decoder (SAD) on the SemanticKITTI validation set.

Repeated number of SAD
SC SSC
IoU mIoU

5 47.12 19.17
7 46.93 19.23
9 (current setting) 47.24 19.21
11 46.95 19.35

Figure S-3. Visualization for severe occlusion examples.

S-8. Qualitative Results
Figure S-5 and Figure S-6 show qualitative comparisons
on the SemanticKITTI validation set and SSCBench test
set, respectively. We obtain the results of SGN, HTCL,
and MonoScene using source codes and network parameters
provided by respective authors. The first and last columns
in both Figures are the input images and the ground truth se-
mantic labels, respectively. The second to fourth columns in
Figure S-5 visualize the 3D semantic scene completion re-
sults from SGN, HTCL, and the proposed SOAP. The sec-
ond to fourth columns in Figure S-6 are the results from
MonoScene, SGN, and the proposed SOAP. We see that
SOAP reconstructs 3D scenes more precisely than SGN,
HTCL, and MonoScene.
Visualization for severe occlusion examples. Figure S-3
illustrates the qualitative results of SOAP on severe occlu-
sion examples. As occluded regions in the current T frame
become visible in a previous T − 3 frame, SOAP generates
reliable 3D SSC predictions even under challenging condi-
tions of severe occlusion.
Regions occluded by moving objects. Figure S-3 illus-
trates that road regions occluded by a moving object in the
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Figure S-4. t-SNE visualization of features for regions occluded
by moving objects.

current frame are often visible in previous frames. The
right figure presents a t-SNE visualization of features for
occluded points (red) and visible points (green) across the
frames, along with randomly sampled points (gray). This
highlights that occluded regions caused by moving objects
can often be refined using features in historical frames.
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SGNInput Ground TruthSOAP (ours)HTCL
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Figure S-5. Qualitative results on SemanticKITTI validation set.
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MonoScene Ground TruthSOAP (ours)SGN

Figure S-6. Qualitative results on KITTI360-SSCBench test set.
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