
SemanticDraw: Towards Real-Time Interactive Content Creation
from Image Diffusion Models

Supplementary Material

Abstract

This is a supplementary material to the CVPR 2025 submis-
sion “SemanticDraw: Towards Real-Time Interactive Con-
tent Creation from Image Diffusion Models.” Section S1
shows implementation details of our acceleration methods.
In Section S2, additional visual results are shown. Finally,
we provide our demo application as we have promised in
our main manuscript. Our formulation introduces new con-
trollable hyperparameters that users may interact in order
to create images that respect their intentions. Section S3
demonstrates how our new tool can be used in image con-
tent creation.

S1. Implementation Details
We begin by providing additional implementation details.

S1.1. Acceleration-Compatible Regional Controls
Algorithm S1 compares between the the baseline MultiDif-
fusion [1] and our stabilized sampling from multiple region-
ally assigned text prompts introduced in Section 3.2 of the
main manuscript. As we have discussed in Section 3 of the
main manuscript, improper placing of the aggregation step
and strong interference of its bootstrapping strategy limit
the ability to generate visually pleasing images under mod-
ern fast inference algorithms [2, 4–6, 9, 13]. Therefore, we
instead focus on changing the bootstrapping stage of line
9-13 and the diffusion update stage of line 14-15 of Algo-
rithm S1 in order to establish compatibility to accelerating
diffusion samplers.

The resulting Algorithm S2 developed in Section 3.2
of the main manuscript achieves this. The differences be-
tween our approach from the baseline inference algorithm
are marked with blue. First, in line 10, we change the boot-
strapping background color to white. Having extremely low
number of sampling steps (4-5), this bootstrapping back-
ground is easily leaked through the final image as seen in
Figure 3 of the main manuscript. We notice that white back-
grounds are common in public image datasets on which the
diffusion models are trained. Therefore, changing random
background images into white backgrounds alleviate this
leakage problem.

Diffusion models have a strong tendency to generate ob-
jects at the center of the frame. This positional bias makes
generation from small, off-centered masks difficult espe-
cially in the accelerated sampling, where the final struc-

User Cmd t t + 1 t + 2 t + 3 t + 4 t + 5

1: initialize E U0 U1 U2 U3 U4 D

2: no-op
U0 U1 U2 U3 U4 D

3: draw mask
U0 U1 U2 U3

4: edit prompt E U0 U1 U2

5: edit mask
U0 U1

6: no-op
U0

Figure S1. Example execution process of Multi-Prompt Stream
Batch pipeline of SEMANTICDRAW. By aggregating latents at
different timesteps a single batch, we can maximize throughput
by hiding the latency.

ture of generated images are determined at the first two
inference steps. By masking with off-centered masks, the
objects under generation are unnaturally cut, leading to
defective generations. Lines 13-14 of Algorithm S2 are
our mask-centering stage for bootstrapping to alleviate this
problem. In the first few steps of generation, for each
mask-designated object, intermediate latents are masked
then shifted to the center of the object bounding box. This
operation enforces the denoising network to focus on each
foreground object located at the center of the screen. Lines
17-19 of Algorithm S2 undo this centering operation done
in lines 13-14. The separately estimated foreground objects
are aggregated into the single scene by shifting them back
to their original absolute positions.

Finally, a single reverse diffusion step in line 14 of Al-
gorithm S1 is split into the denoising part in line 16 of Al-
gorithm S2 and the noise addition part in line 24 of Algo-
rithm S2. As we have discussed with visual example in
Figure 3c in the main manuscript, this simple augmenta-
tion of the original MultiDiffusion [1] stabilizes the algo-
rithm to work with fast inference techniques such as LCM-
LoRA [5, 6], SDXL-Lightning [4], Hyper-SD [9], and Flash
Diffusion [2]. Also refer to panorama generation in Fig-
ure S7 where this wrongly placed aggregation after STEP
operation causing extremely blurry generation under accel-
erating schedulers [5, 6]. The readers may also consult our
submitted code for the implementation of Algorithm S2.

S1.2. Streaming Pipeline Execution

Extending Figure 4b of the main manuscript, Figure S1
elaborates on the pipelined execution from our multi-prompt
stream batch architecture for near real-time generation from
multiple regionally assigned text prompts. We have empiri-



Algorithm S1: Baseline [1].
Input: a diffusion model ϵθ , a latent autoencoder (enc,dec) , prompt embeddings y1:p , masks w1:p , timesteps t = t1:n , the output size

(H′,W ′) , the tile size (H,W ) , an inference algorithm STEP , a noise schedule α , the number of bootstrapping steps nbstrap .
Output: An image I of designated size (8H′, 8W ′) generated from multiple text-mask pairs.

1 x′
tn
∼ N (0, 1)H

′×W ′×D // sample the initial latent

2 {T1, . . . , Tm} ⊂ {(ht, hb, wl, wr) : 0 ≤ ht < hb ≤ H′, 0 ≤ wl < wr ≤W ′}
// get a set of overlapping tiles

3 for i← n to 1 do
4 x̃← 0 ∈ RH′×W ′×D // placeholder for the next step latent

5 w̃ ← 0 ∈ RH′×W ′
// placeholder for the next step mask weights

6 for j ← 1 to m do
7 x̄1:p ← repeat(crop(xti , Tj), p) // get a cropped intermediate latent tile

8 w̄1:p ← crop(w1:p, Tj) // get cropped mask tiles

9 if i ≤ nbstrap then
10 xbg ← enc(c1) , where c ∼ U(0, 1)3 // get a uniform color background

11 xbg ←
√

α(ti)xbg
√

1− α(ti)ϵ , where ϵ ∼ N (0, 1)H×W×D // add noise to the background for mixing

12 x̄1:p ← w̄1:p ⊙ x̄1:p + (1− w̄1:p)⊙ xbg // bootstrap by treating as multiple single-instance images

13 end
14 x̄1:p ← STEP(x̄1:p,y1:p, i; ϵθ, α, t) // prompt-wise batched diffusion update

15 x̃[Tj ]← x̃[Tj ] +
∑p

k=1 w̄k ⊙ x̄k // aggregation by averaging

16 w̃[Tj ]← w̃[Tj ] +
∑p

k=1 w̄k // total weights for normalization

17 end
18 xti−1 ← x̃⊙ w̃−1 // reverse diffusion step

19 end
20 I ← dec(xt1 ) // decode latents to get an image

Algorithm S2: SEMANTICDRAW pipeline of Section 3.2.

Input: a diffusion model ϵθ , a latent autoencoder (enc,dec) , prompt embeddings y1:p , quantized masks w(t1:n)
1:p , timesteps t = t1:n , the

output size (H′,W ′) , a noise schedule α and η , the tile size (H,W ) , an inference algorithm STEPEXCEPTNOISE , the number of
bootstrapping steps nbstrap .

Output: An image I of designated size (8H′, 8W ′) generated from multiple text-mask pairs.
1 x′

tn
∼ N (0, 1)H

′×W ′×D

2 {T1, . . . , Tm} ⊂ {(ht, hb, wl, wr) : 0 ≤ ht < hb ≤ H′, 0 ≤ wl < wr ≤W ′}
3 for i← n to 1 do
4 x̃← 0 ∈ RH′×W ′×D

5 w̃ ← 0 ∈ RH′×W ′

6 for j ← 1 to m do
7 x̄1:p ← repeat(crop(xti , Tj), p)
8 w̄

(ti)
1:p ← crop(w

(ti)
1:p , Tj) // use different quantized masks for each timestep

9 if i ≤ nbstrap then
10 xbg ← enc(1) // get a white color background

11 xbg ←
√

α(ti)xbg
√

1− α(ti)ϵ , where ϵ ∼ N (0, 1)H×W×D

12 x̄1:p ← w̄1:p ⊙ x̄1:p + (1− w̄1:p)⊙ xbg

13 u1:p ← get bounding box centers(w̄1:p) ∈ Rp×2 // get the bounding box center of each mask

14 x̄1:p ← roll by coordinates(x̄1:p,u1:p) // center foregrounds to their mask centers

15 end
16 x̄1:p ← STEPEXCEPTNOISE(x̄1:p,y1:p, i; ϵθ, α, t) // pre-averaging

17 if i ≤ nbstrap then
18 x̄1:p ← roll by coordinates(x̄1:p,−u1:p) // restore from centering

19 end
20 x̃[Tj ]← x̃[Tj ] +

∑p
k=1 w̄k ⊙ x̄k

21 w̃[Tj ]← w̃[Tj ] +
∑p

k=1 w̄k

22 end
23 xti−1 ← x̃⊙ w̃−1

24 xti−1 ← xti−1 + ηti−1ϵ , where ϵ ∼ N (0, 1)H×W×D // post-addition of noise

25 end
26 I ← dec(xt1 )



(a) Masks (b) 1 step (c) 2 steps (d) 3 steps (e) 4 steps

Figure S2. The number of centering steps effectively trades off centered-bias against overall harmony. Composition, harmony, and mask-
obedience are achieved in the sweet spot of 2-3 steps.

Background: “A brick wall”, Red: “A moss”

(a) Prompt mask. (b) σ = 0 , i.e., no QMask.

(c) σ = 16 . (d) σ = 32 .

Figure S3. Effect of the standard deviation in mask smoothing.

cally found that the text and image encoders for popular dif-
fusion models take significantly longer latency than the de-
noising network. Assuming that users change text prompts
and background images less frequently than they change the
areas occupied by each semantic masks, such latency can
be hidden under the high-throughput streaming generation
of images. Moreover, mask processing takes almost negli-
gible latency compared to image generation or text encod-
ing. In other words, drawing with semantic masks of pre-
encoded text prompts do not affect the generation speed,
allowing users to almost seamlessly interact with the gener-
ation pipeline by friendly drawing interface. This user in-
terface of our drawing-based interactive content creation is
the same as commercial drawing software with brush tools.
The only difference is that our brush tools apply semantic
masks instead of colors or patterns. This similarity opens

up a novel application for diffusion models, i.e., SEMAN-
TICDRAW.

S1.3. Controlling Fidelity-Harmony Trade-off
As we have mentioned in Section 3.2, accelerated samplers
involving 5 or few steps like in our case rely heavily on the
first few steps of inference in determining the structure of
the image. Many diffusion models are trained using natu-
ral images that place their objects of interest at the center
of the canvas. This makes these diffusion models generate
all of their prompt-guided objects at the center of the can-
vas. Cropping by masks occasionally leads to destruction
of such objects. Mask-centering bootstrapping is devised
in order to alleviate this problem. However, applying boot-
strapping from beginning to the end causes another problem
of disharmony in the overall image with multiple region-
based prompts. This can be seen in Figure S2e, where the
girls’ upper part of head is unnaturally cut. This problem
also caused by the acceleration. Unlike gradual generation
over tens of inference steps, in our accelerated scenario, the
later inference steps are responsible for both high quality
texture generation and boundary creation. Those quickly
generated model-generated boundaries do not align well
with the user-given mask inputs, creating unnatural cuts af-
ter merging with other prompt-guided subsections of the
creation. We, therefore, provide a simple control handle
that trades off mask-fidelity against overall harmony: the
number of mask-centering steps in the bootstrapping stage.
The effect of this control handle can be seen in Figure S2.
We have empirically found that 1-3 steps work best, and we
have used 2 steps throughout this work.

S1.4. Mask Quantization
To increase harmonization within a created image, we have
introduced mask quantization as our final piece of the puz-
zle in Section 3.2 of the main manuscript. Mask quanti-
zation allows smooth masks with controllable smoothness
that resemble soft brush tools in common drawing software.
Therefore, this stage not only increases image fidelity but
also enhances user experience in our SEMANTICDRAW ap-
plication. This section explains additional technical details



O
ur
s,
M
as
k
O
ve
rla

y

Image prompt (row, column): Background (1, 1): “Clear deep blue sky”, Green (1, 2): “Summer mountains”, Red (1, 3): “The Sun”, Pale Blue (2, 1): “The Moon”, Light Orange
(2, 2): “A giant waterfall”, Purple (2, 3): “A giant waterfall”, Blue (3, 1): “Clean deep blue lake”, Orange (3, 2): “A large tree”, Light Green (3, 3): “A large tree”

Figure S4. Mask overlay images of the generation result in Figure 2 of the main manuscript. Generation by our SEMANTICDRAW not only
achieves high speed of convergence, but also high mask fidelity in the large-size region-based text-to-image synthesis, compared to the
baseline MultiDiffusion [1]. Each cell shows how each mask (including the background one) maps to each generated region of the image,
as described in the label below. Note that we have not provided any additional color or structural control other than our semantic palette,
which is simply pairs of text prompts and binary masks.

of mask quantization.

As Figure 5 of the main manuscript shows, the mask
smoothing is an optional preprocessing procedure before
generation. Once users provide a set of masks correspond-
ing to a set of text prompts they want to draw, the binary
masks are smoothened with a low-pass filter such as Gaus-
sian blurs. In order to perform masking with these contin-
uous masks for discrete denoising steps of the accelerated
schedulers [2, 4–6, 9], we create a set of binary masks from
each of the continuous masks by thresholding with the noise
levels predefined by the diffusion scheduler. For example,
Figure 5 of the main manuscript shows five noise levels ac-
tually used in generating the results in the main manuscript
and throughout this Supplementary Material. The resulting
set of binary masks have monotonically increasing sizes as
the corresponding noise levels become lower. Note that we
can interpret a noise level of each generating step as a mag-
nitude of uncertainty during the reverse diffusion process.
Since the boundary of an object is fuzzier than the center
of the object of prescribed masked region, the more uncer-
tain boundary regions can be sampled only during the few
latest steps where detailed textures dominant over structural
development. Therefore, a natural way of applying these
binary masks is in the order of increasing size. By apply-
ing each generated binary mask at the timestep with corre-
sponding noise level, we effectively enlarge the size of the
mask of a foreground text prompt as we proceed on the gen-
erative denoising steps.

The blurring and quantization of the binary masks have
a nice interpretation of a rough sketch. In many cases where
users prescribe masks to query for multi-object generation,
the exact boundary locations for the best visual construction
of an image are not known a priori. In other words, human
creation of arts almost always starts with rough sketches.
We can increase or decrease the standard deviation of the
blur to control the roughness of the sketch, i.e., the certainty
of our designation on the boundary. This additional control
knob is effective in creating AI-driven arts which inherently
exploits high randomness in practice. For reference, Fig-
ure S3 shows the effect of increasing the blurriness at the
mask proprocessing step. As the standard deviation of the
mask blur increases from 0 to 32, the moss, the content of
the mask, gradually shrinks and semantically blurred with
the brick wall, the background content. As our supplemen-
tary code show, this semantic mixing effect of mask blurring
and quantization is helpful to harmonize contents in genera-
tive editing tasks, i.e., inpainting, where background images
are predefined and not fully masked out during generation.

S2. More Results

In this section, we provide additional visual comparison re-
sults between baseline MultiDiffusion [1], a simple appli-
cation of acceleration modules [5, 6] to the baseline, and
our stabilized Algorithm S2. We show that our algorithm
is capable of generating large-scale images from multiple
regional prompts with a single commercial off-the-shelf



(a) Masks (b) LRDiff (45s) (c) (b)+LCM (1s) (d) Ours (1s)

Figure S5. Qualitative comparison between LRDiff+LCM and ours. Background prompt: “Iron Man and Hulk stand amidst the ruins,
engaged in a fierce battle with each other.” Left box prompt: “Iron-man” Right box prompt: “Hulk”

graphics card, e.g., an RTX 2080 Ti GPU.

S2.1. Region-Based Text-to-Image Generation
We show additional region-based text-to-image generation
results in Figure S6. In addition to Figure 6 of the main
manuscript, the generated samples show that our method
is able to accelerate region-based text-to-image generation
consistently by ×10 without compromising the generation
quality. Moreover, Figure 2 of the main manuscript has
shown that the benefits from our acceleration method for
arbitrary-sized generation and region-based controls are in-
deed simultaneously enjoyable. Our acceleration method
enables publicly available Stable Diffusion v1.5 [10] to gen-
erate a 1920 × 768 scene from eight hand-drawn masks in
59 seconds, which is ×52.5 faster than the baseline [1] tak-
ing more than 51 minutes to converge into a low-fidelity
image. Figure S4 shows mask fidelity of this generation.
We can visualize that even if the generated image has larger
dimension than the dimensions the model has been trained
for, i.e., 768 × 768 , the mask fidelity is achieved under
this accelerated generation. Locations and sizes of the Sun
and the Moon match to the provided masks in near per-
fection; whereas mountains and waterfalls are harmonized
within the overall image, without violating region bound-
aries. This shows that the flexibility and the speed of our
generation paradigm, SEMANTICDRAW, is also capable of
professional usage.

Furthermore, we have found that more recent methods
such as LRDiff [8] also suffers the same instability problem
when accelerated. Figure S5 shows one example. In this
qualitative results, our method not only achieves faster gen-
eration speed (×45), but also enjoys better mask fidelity and
perceptual quality. This further validates the significance of
our strategy in professional interactive content creation.

Regarding that professional image creation process us-
ing diffusion models typically involves a multitude of re-
sampling trials with different seeds, the original baseline
model’s convergence speed of one image per hour severely
limits the applicability of the algorithm. In contrast, our ac-

celeration method enables the same large-size region-based
text-to-image synthesis to be done under a minute, making
this technology practical to industrial usage.

S2.2. Panorama Generation
We can also visually compare arbitrary-sized image cre-
ation with panorama image generation task. As briefly
mentioned in Section S1, comparing with this task reveals
the problem of incompatibility between accelerating sched-
ulers and current region-based multiple text-to-image syn-
thesis pipelines. Figure S7 shows the results of large-scale
panorama image generation using our method, where we
generate 512 × 4608 images from a single text prompt.
Naı̈vely applying acceleration to existing solution leads to
blurry unrealistic generation, enforcing users to resort to
more conventional diffusion schedulers that take long time
to generate [12]. Instead, our method is compatible to ac-
celerated samplers [2, 4–6, 9], showing ×13 faster genera-
tion of images with sizes much larger than the resolutions of
512×512 or 768×768 , for which the diffusion model [10]
is trained. Combining results from Section S2.1 and S2.2
our Algorithm S2 significantly broadens the usability of dif-
fusion models for professional content creators. This leads
to the last section of this Supplementary Material, the de-
scription of our submitted demo application.

S3. Sample Application
This last section elaborates on the design and the example
usage of our demo application of SEMANTICDRAW, intro-
duced in Section 5 of the main manuscript. Starting from
the basic description of user interface in Section S3.1, we
discuss the expected usage of the app in Section S3.2. Our
discussion mainly focuses on how real-time interactive con-
tent creation is achieved from accelerated region-based text-
to-image generation algorithm we have provided.

S3.1. User Interface
As illustrated in Figure S8b, user interactions are classified
into two groups, i.e., the slow processes and the fast pro-



Background: “A cinematic photo of a sunset”, Yellow: “An abandoned castle wall”, Red: “A photo of Alps”, Blue: “A daisy field”

Background: “A photo of outside”, Yellow: “A river”, Red: “A photo of a boy”, Blue: “A purple balloon”

Background: “A grassland”, Yellow: “A tree blossom”, Red: “A photo of small polar bear”

Background: “A photo of mountains with lion on the cliff”, Yellow: “A rocky cliff”, Red: “A dense forest”, Blue: “A walking lion”

Background: “A photo of the starry sky”, Yellow: “The Earth seen from ISS”, Red: “A photo of a falling asteroid”

(a) Prompt (b) MD, 50 steps (c) MD+LCM, 5 steps (d) Ours, 5 steps

Figure S6. Additional region-based text-to-image synthesis results. Our method accelerates MultiDiffusion [1] up to ×10 while preserving
or even boosting mask fidelity.



“A photo of Alps”
M
D
(1
54

s)
M
D
+L

CM
(10

s)
O
ur

s
(1
2s
)

“The battle of Cannae drawn by Hieronymus Bosch”

M
D

(3
01

s)
M

D
+L

C
M

(1
7s

)
O

ur
s(

21
s)

“A photo of a medieval castle in the distance over rocky mountains in winter”

M
D
(2
96
s)

M
D
+L

CM
(19

s)
O
ur

s
(2
3s
)

“A photo under the deep sea with many sea animals”

M
D
(2
90

s)
M
D
+L

CM
(18

s)
O
ur

s
(2
3s
)

Figure S7. Additional panorama generation results. The images of size 512 × 4608 are sampled with 50 steps for MD and 4 steps for
MD+LCM and Ours. Our SEMANTICDRAW can synthesize high-resolution images in seconds. We achieve ×13 improvement in inference
latency.



(a) Screenshot of the application. (b) Application design schematics.

Figure S8. Sample application demonstrating semantic palette enabled by our SEMANTICDRAW algorithm. After registering prompts and
optional background image, the users can create images in real-time by drawing with text prompts.

cesses, based on the latency of response from the model.
Due to the high overhead of text encoder and image en-
coder, the processes involving these modules are classified
as slow processes. However, operations such as preprocess-
ing or saving of mask tensors and sampling of the U-Net
for a single step take less than a second. These processes
are, therefore, classified as fast ones. SEMANTICDRAW,
our suggested paradigm of image generation, comes from
the observation that, if a user first registers text prompts,
image generation from user-drawn regions can be done in
real-time.

The user interface of Figure S9 is designed based on the
philosophy to maximize user interactions of the fast type
and to hide the latency of the slow type. Figure S9 and
Table S1 summarize the components of our user interface.
The interface is divided into four compartments: the (a) se-
mantic palette, which is a palette of registered text prompts
(no. 1-2), the (b) drawing screen (no. 3-5), the (c) streaming
display and controls (no. 6-7), and the (d) control panel for
the additional controls (no 8-13). The (a) semantic palette
manages the number of semantic brushes to be used in the
generation, which will be further explained below. Users
are expected to interact with the application mainly through
(b) drawing screen, where users can upload backgrounds
and draw on the screen with selected semantic brush. Then,
by turning (c) streaming interface on, the users can receive
generated images based on the drawn regional text prompts
in real-time. The attributes of semantic brushes are modi-
fied through (d) control panel.

Types of the transaction data between application and
user are in twofold: a (1) background and a (2) list of text
prompt-mask pairs, named semantic brushes. The user can
register these two types of data to control the generation
stream. Each semantic brush consists of two part: (1) text
prompt, which can be edited in the (d) control panel after
clicking on the brush in (a) semantic palette, a set of avail-

able text prompts to draw with, and (2) mask, which can be
edited by selecting the corresponding color brush at draw-
ing tools (no. 5), and drawing on the drawing pad (no. 3)
with a brush of any color. Note that in the released ver-
sion of our code, the color of semantic brush does not affect
generation results. Its color only separates a semantic brush
from another for the users to discern.

As the interface of the (d) control panel implies, our re-
formulation of MultiDiffusion [1] provides additional hy-
perparameters that can be utilized for professional creators
to control their creation processes. The mask alpha (no.
11) and the mask blur std (no. 12) determine preprocess-
ing attributes of selected semantic brush. Before the mask
is quantized into predefined noise levels of scheduler, as
elaborated in Section S1.4, mask is first multiplied by mask
alpha and goes through an isotropic Gaussian blur with a
specified standard deviation. That is, given a mask w ,
a mask alpha a , and the noise level scheduling function
β(t) =

√
1− α(t) , the resulting quantized mask w

(ti)
1:p is:

w
(ti)
1:p = 1[aw > β(ti)] , (S1)

where 1[·] is an indicator function taking the inequality as
a binary operator to make a boolean mask tensor w(ti)

1:p at
time ti . The default noise levels β(t) of the acceleration
modules [2, 4–6, 9] are close to one, as shown in Figure 5
of the main manuscript. This makes mask alpha extremely
sensitive. By changing its value only slightly, e.g., down
to 0.98, the corresponding prompt already skips first two
sampling steps. This quickly degenerates the content of the
prompt, and therefore, the mask alpha (no. 11) should be
used in care. The effect of mask blur std (no. 12) is shown
in Figure S3, and will not be further elaborated in this sec-
tion. The seed of the system can be tuned by seed control
(no. 13). Nonetheless, controlling pseudo-random gener-
ator will rarely be needed since the application generates



Figure S9. Screenshot of our supplementary demo application. Details of the numbered components are elaborated in Table S1.

Table S1. Description of each numbered component in the SEMANTICDRAW demo application of Figure S9.

No. Component Name Description

1 Semantic palette Create and manage text prompt-mask pairs.
2 Import/export semantic palette Easy management of text prompt sets to draw.
3 Main drawing pad User draws at each semantic layers with brush tool.
4 Background image upload User uploads background image to start drawing.
5 Drawing tools Using brush and erasers to interactively edit the prompt masks.
6 Display Generated images are streamed through this component.
7 History Generated images are logged for later reuse.
8 Prompt edit User can interactively change the positive/negative prompts at need.
9 Prompt strength control Prompt embedding mix ratio between the current & the background. Helps content blending.

10 Brush name edit Adds convenience by changing the name of the brush. Does not affect the generation.
11 Mask alpha control Changes the mask alpha value before quantization. Recommended: > 0.95 .
12 Mask blur std. dev. control Changes the standard deviation of the quantized mask of the current semantic brush.
13 Seed control Changes the seed of the application.



(a) Upload a background image. (b) Register semantic palette.

(c) Draw with semantic brushes. (d) Play the stream and interact.

Figure S10. Illustrated usage guide of our demo application of SEMANTICDRAW.

images in an infinite stream. The prompt edit (no. 8) is the
main control of semantic brush. The users can change text
prompt even when generation is on stream. It takes exactly
the total number of inference steps, i.e., 5 steps, for a change
in prompts to take effect. Further, we provide prompt
strength (no. 9) as an alternative to highly sensitive mask
alpha (no. 11) to control the saliency of the target prompt.
Although modifying the alpha channel provides good in-
tuition for graphics designer being already familiar to al-
pha blending, the noise levels of consistency model [2, 4–
6, 9, 13] make the mask alpha value not aligned well with
our intuition in alpha blending. Prompt strength is a mix ra-
tio between the embeddings of the foreground text prompt
of given semantic brush and background text prompt. We
empirically find that changing the prompt strengths gives
smoother control to the foreground-background blending

strength than mask alpha. However, whereas the mask al-
pha can be applied locally, the prompt strength only glob-
ally takes effect. Therefore, we believe that the two controls
are complementary to one another.

Finally, we provide seed-fixing option that enables in-
cremental generation for drawing-like experience. The dif-
ference between simple streaming generation and stream-
ing generation with our seed-fixing option is elaborated in
Figure S11. By not only caching the prompt embeddings
during streaming but also sharing noise tensors within a
stream of generation, we can simply switch into incremental
editing in our application. Therefore, with the seed-fixing
option, we can maintain strong consistency across entire
stream of generation, which we may call a session of con-
tent creation. This enables content creators to switch from
random ideation to detailed editing and vice versa, greatly



Figure S11. Sequential generation of frames from real-time drawing of masks. Top row: Original without seed-fixing. Bottom row:
Increased determinism with seed-fixing option. A row of images comes sequentially from a single stream of generation given the same
sequence of interactive controls (from left to right).

increasing the practicality of the application. Both options
are available in our official code.

S3.2. Basic Usage
We provide the simplest procedure of creating images from
SEMANTICDRAW pipeline. Screenshots in Figure S10 il-
lustrate the four-step process.

1. Start the Application. After installing the required
packages, the user can open the application with the fol-
lowing command prompt:

1 python app.py --model
"KBlueLeaf/kohaku-v2.1" --height 512
--width 512

The application front-end is web-based and can be opened
with any web browser through localhost:8000 . We
currently support various baseline architecture including
Stable Diffusion 1.5 [10], Stable Diffusion XL [7], and
Stable Diffusion 3 [11] checkpoints for --model op-
tion. For SD1.5, we support latent consistency model
(LCM) [5, 6] and Hyper-SD [9], for SDXL, we support
SDXL-Lightning [4], and for SD3, we support Flash Dif-
fusion [2] for acceleration of the generation process. The
height and the width of canvas should be predefined at the
startup of the application.

2. Upload Background Image. See Figure S10a. The
first interaction with the application is to upload any im-
age as background by clicking the background image up-
load (no. 4) panel. The uploaded background image will
be resized to match the canvas. After uploading the im-
age, the background prompt of the uploaded image is au-
tomatically generated for the user by pre-trained BLIP-2
model [3]. The background prompt is used to blend be-
tween foreground and background in prompt-level globally,
as elaborated in Section S3.1. The interpolation takes place

when a foreground text prompt embedding is assigned with
a prompt strength less than one. User is always able to
change the background prompt like other prompts in the se-
mantic palette.

3. Type in Text Prompts. See Figure S10b. The next
step is to create and manage semantic brushes by interacting
with the semantic palette (no. 1). A minimal required mod-
ification is text prompt assignment through the prompt edit
(no. 8) panel. The user can additionally modify other op-
tions in the control panel marked as yellow in Figure S10b.

4. Draw. See Figure S10c. A user may start drawing
by selecting a brush in drawing tools (no. 5) toolbar that
matches the user-specified text prompt in the previous step.
Grab a brush, draw, and submit the drawn masks. Af-
ter initiating the content creation, the images are streamed
through the display (no. 6) in real-time from dynamically
changing user inputs. The past generations are saved in his-
tory (no. 7).

References
[1] Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel.

MultiDiffusion: Fusing diffusion paths for controlled image
generation. In ICML, 2023. 1, 2, 4, 5, 6, 8

[2] Clement Chadebec, Onur Tasar, Eyal Benaroche, and Ben-
jamin Aubin. Flash Diffusion: Accelerating any conditional
diffusion model for few steps image generation. In AAAI,
2025. 1, 4, 5, 8, 10, 11

[3] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
BLIP-2: Bootstrapping language-image pre-training with
frozen image encoders and large language models. In ICML,
2023. 11

[4] Shanchuan Lin, Anran Wang, and Xiao Yang. SDXL-
Lightning: Progressive adversarial diffusion distillation.
arXiv preprint arXiv:2402.13929, 2024. 1, 4, 5, 8, 10, 11

[5] Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang
Zhao. Latent consistency models: Synthesizing high-



resolution images with few-step inference. arXiv preprint
arXiv:2310.04378, 2023. 1, 4, 11

[6] Simian Luo, Yiqin Tan, Suraj Patil, Daniel Gu, Patrick von
Platen, Apolinário Passos, Longbo Huang, Jian Li, and Hang
Zhao. LCM-LoRA: A universal stable-diffusion acceleration
module. arXiv preprint arXiv:2311.05556, 2023. 1, 4, 5, 8,
10, 11

[7] Dustin Podell, Zion English, Kyle Lacey, Andreas
Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and
Robin Rombach. SDXL: Improving latent diffusion models
for high-resolution image synthesis. In ICLR, 2024. 11

[8] Zipeng Qi, Guoxi Huang, Chenyang Liu, and Fei Ye. Lay-
ered Rendering Diffusion Model for Controllable Zero-Shot
Image Synthesis. In ECCV, 2024. 5

[9] Yuxi Ren, Xin Xia, Yanzuo Lu, Jiacheng Zhang, Jie Wu, Pan
Xie, XING WANG, and Xuefeng Xiao. Hyper-SD: Trajec-
tory segmented consistency model for efficient image syn-
thesis. In NeurIPS, 2024. 1, 4, 5, 8, 10, 11

[10] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, 2022. 5, 11

[11] Axel Sauer, Frederic Boesel, Tim Dockhorn, Andreas
Blattmann, Patrick Esser, and Robin Rombach. Fast high-
resolution image synthesis with latent adversarial diffusion
distillation. In SIGGRAPH Asia, 2024. 11

[12] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. In ICLR, 2020. 5

[13] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya
Sutskever. Consistency models. In ICML, 2023. 1, 10


	Implementation Details
	Acceleration-Compatible Regional Controls
	Streaming Pipeline Execution
	Controlling Fidelity-Harmony Trade-off
	Mask Quantization

	More Results
	Region-Based Text-to-Image Generation
	Panorama Generation

	Sample Application
	User Interface
	Basic Usage


