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A. Energy Calculation Details
To clarify the energy consumption of our STAtten archi-
tecture in Section 5.3, we present the detailed equations of
every layer shown in Table 7.

Table 7. The detailed equations of energy consumption on every
layer of STAtten architecture.

Block Layer Energy Consumption

Embedding First Conv EMAC · FConv · T
Other Convs EAC · FConv · T · SConv

Attention
Q, K, V 3 · EAC · FConv · T · SConv

Self-attention EAC · TND2 · (SK + SV + SQ)
MLP EAC · FConv · T · SConv

MLP MLP1 EAC · FConv · T · SConv

MLP2 EAC · FConv · T · SConv

Here, EMAC is the energy of MAC operation, FConv

is FLOPs of the convolutional layer, T , N , and D are
timestep, the number of patches, and channel dimension re-
spectively, SConv is the firing rate of input spikes on the
convolutional layer, SQ, SK , and SV are the firing rate of
input spikes on Q, K, and V projection layer respectively.
The FLOPs of the convolutional layer can be calculated as
follows:

FConv = K ·K ·Hout ·Wout · Cin · Cout, (14)

where K is kernel size, Hout and Wout are the height and
width of the output feature map respectively, and Cin and
Cout are the input and output channel dimension respec-
tively.

In the embedding block, for the first convolutional layer,
since we use direct coding to convert a float pixel value
into binary spikes [49], the firing rate does not need to be
calculated for energy consumption, and EMAC is used for
the float pixel input. In the Attention block, for the en-
ergy calculation of the self-attention part, we can use the
equations of our spatial-temporal methods shown in Table
1. Following previous works [53, 64], we calculate the en-
ergy consumption based on the FLOPs operation executed
in 45nm CMOS technology [18], e.g., EMAC = 4.6pJ , and
EAC = 0.9pJ . The firing rate and the theoretical energy
consumption of the STAtten with Spike-driven Transformer
architecture are provided in Appendix E.

B. Experimental Details
In this section, we provide the experimental details on CI-
FAR10/100, ImageNet, CIFAR10-DVS, and N-Caltech101

Table 8. The experimental details on each dataset. L-D in ar-
chitecture represents L number of encoder blocks and D channel
dimension.

CIFAR10/100 ImageNet DVS

Timestep 4 4 16
Batch size 64 32 16

Learning rate 0.0003 0.001 0.01
Training epoch 310 210 210

Optimizer AdamW Lamb AdamW
Hardware (GPU) A5000 A100 A5000

Architecture 2-512 8-768 2-256

datasets. The Table 8 shows that general experimental setup
in [53]. In other architecture [42, 52, 62, 64], we follow
their configurations for fair comparison.

We apply data augmentation following [53, 64]. For the
ImageNet dataset, general augmentation techniques such as
random augmentation, mixup, and cutmix are employed.
Different data augmentation strategies are applied to the
CIFAR10-DVS and N-Caltech101 datasets according to
NDA [32]. While training on the dynamic datasets, we
add a pooling layer branch and a residual connection to the
spatial-temporal attention layer. The outputs of the pooling
layer and the spatial-temporal attention are then multiplied
element-wise to extract important spike feature maps.

C. Ablation Study
In this section, we analyze the impact of timestep combi-
nations and block sizes in our block-wise attention mecha-
nism.

C.1. Timestep Combination

In section 4.1, we identified that binary matrix multiplica-
tion between temporally distant spikes can increase silent
neurons, leading to information loss. This phenomenon
can be explained through binary matrix multiplication pat-
terns. Let Qt,Kt′ ∈ {0, 1}N×D be binary spike matrices
at timesteps t and t′. When computing attention between
these timesteps, each element of their product is:

(QtK
⊤
t′ )i,j =

D∑
d=1

qt,i,d · kt′,j,d, (15)

where i, j ∈ {1, ..., N} represent token positions, and d ∈
{1, ..., D} is the feature dimension. As the temporal dis-
tance |t − t′| increases, the spike patterns become less cor-
related, increasing the probability of qt,i,d ·kt′,j,d = 0. This
multiplicative effect accumulates across the dimension D,



Table 9. Analysis of temporal block combinations and their accuracy. Each entry shows timestep ranges for Q/K/V tensors across two
blocks (B1, B2). For example, [1,2]/[3,4]/[1,2] indicates Q and V use timesteps 1-2 while K uses timesteps 3-4. Notation [0:16] represents
timesteps from 0 through 16.

Dataset Temporal Combination (Q/K/V) Accuracy (%)
B1 B2

CIFAR100
[1,2] / [1,2] / [1,2] [3,4] / [3,4] / [3,4] 79.85

[1,2] / [3,4] / [1,2] [3,4] / [1,2] / [3,4] 79.28

[1,4] / [2,3] / [1,4] [2,3] / [1,4] / [2,3] 79.09

Sequential CIFAR100 [0:16] / [0:16] / [0:16] [16:32] / [16:32] / [16:32] 62.95

[0:16] / [16:32] / [0:16] [16:32] / [0:16] / [16:32] 62.80

N-Caltech101 [0:8] / [0:8] / [0:8] [8:16] / [8:16] / [8:16] 82.49

[0:8] / [8:16] / [0:8] [8:16] / [0:8] / [8:16] 79.09

leading to more zero outputs and consequently more silent
neurons.

To illustrate this effect, consider binary matrices Qt and
Kt′ with the same number of spikes but at different tempo-
ral distances. For nearby timesteps t and t+ 1:

Qt =


1 1 0 1 0
0 1 1 0 1
1 0 1 1 0
1 0 1 0 1

 ,Kt+1 =


1 1 0 1 0
0 1 1 0 1
1 0 1 0 1
1 1 0 1 0


(16)

Their product yields many high values due to similar pat-
terns:

QtK
⊤
t+1 =


3 2 2 3
2 3 2 1
2 2 2 2
2 2 2 2

 (17)

However, for distant timesteps t and t+∆:

Qt =


1 1 0 1 0
0 1 1 0 1
1 0 1 1 0
1 0 1 0 1

 ,Kt+∆ =


0 1 1 0 1
1 0 1 1 0
1 1 0 0 1
0 1 1 1 0


(18)

Their product contains low values and zeros despite having
the same spike density:

QtK
⊤
t+∆ =


1 1 1 1
1 1 0 1
1 1 1 1
0 1 1 1

 (19)

Since we apply LIF after QK⊤V operations to generate
spikes, matrices with higher values from nearby timesteps
are more likely to trigger neurons compared to lower val-
ues from distant timesteps. This example demonstrates that

Table 10. Accuracy comparison with different block sizes. T rep-
resents the timestep for each dataset, B denotes the block size.

Dataset Block size Accuracy (%)

CIFAR100
(T = 4)

B=2 79.85

B=4 79.90

ImageNet
(T = 4)

B=1 77.65

B=2 78.00

B=4 78.06

Sequential CIFAR100
(T = 32)

B=8 60.89

B=16 62.95

B=32 64.30

N-Caltech101
(T = 16)

B=4 83.15

B=8 82.49

B=16 82.40

temporal distance leads to less correlated spike patterns, re-
sulting in increased silent neurons. Fig. 3(b) visualizes this
effect on the CIFAR100 dataset, showing higher neuron ac-
tivation when correlating nearby timesteps compared to dis-
tant ones.

Table 9 shows the performance comparison across dif-
ferent datasets by varying temporal combinations of Q, K,
and V. The notation [a,b]/[c,d]/[e,f] indicates that Q, K,
and V use timesteps [a,b], [c,d], and [e,f], respectively. For
instance, in CIFAR100’s B1, [1,2]/[3,4]/[1,2] means Q and
V use timesteps 1-2 while K uses timesteps 3-4. Across all
datasets, combinations using different timestep ranges con-
sistently show lower performance compared to those using
the same ranges.



C.2. Block Size Analysis

STAtten employs block-wise processing for memory ef-
ficiency. Table 10 shows how block size affects perfor-
mance across different datasets. For CIFAR100 (T=4), us-
ing block size B=2 achieves comparable accuracy to full
spatial-temporal correlation (B=4), with only 0.05% dif-
ference. Similarly, for ImageNet (T=4), block sizes B=2,
and B=4 yield accuracies of 78.00%, and 78.06%, indicat-
ing that larger block sizes slightly improve performance.
However, sequential CIFAR100 (T=32) shows an opposite
trend: smaller block sizes lead to decreased accuracy be-
cause temporal information dominates spatial features in
this dataset. Therefore, we use B=32 for the results pre-
sented in Table 2. For N-Caltech101 (T=16), we achieve
optimal performance with B=4. This reveals that optimal
block size depends on temporal-to-spatial information ratio:
vision tasks favor smaller blocks to preserve spike correla-
tion, while sequential tasks need larger blocks for temporal
modeling.

D. Versatility in Vision Tasks

To demonstrate the generalizability and robustness of our
STAtten, we extend its application to additional vision
tasks, including object detection and transfer learning.

D.1. Object Detection

We evaluate the adaptability of STAtten in the object detec-
tion domain by integrating it as the backbone in the EMS-
YOLO [44] framework, replacing the original backbone.
We train the model on the PASCAL VOC dataset [12] from
scratch, maintaining the same training configuration as the
baseline [44] for a fair comparison. The results, presented in
Table 11, demonstrate STAtten’s competitive performance
in object detection compared to other spike-based architec-
tures [21, 53]. These results highlight STAtten’s adaptabil-
ity to diverse vision tasks beyond classification.

D.2. Transfer Learning

To further validate the generalizability of STAtten, we
conduct transfer learning experiments on CIFAR-10 and
CIFAR-100 datasets. We leverage pre-trained weights from
ImageNet and resize the input images to 224×224 pixels to
align with standard transfer learning protocols. The results,
also shown in Table 12, indicate that STAtten achieves top
performance in transfer learning tasks. These results un-
derscore STAtten’s ability to generalize effectively across
datasets and tasks, leveraging its spatial-temporal atten-
tion mechanism to extract robust features from pre-trained
weights.

Table 11. Performance comparison between STAtten and previous
works on object detection using PASCAL VOC dataset.

Method mAP@0.5 (%) mAP@0.5:0.9 (%)

Spiking-YOLO [21] 51.83 -
SDT [53] 51.63 25.31

STAtten + [53] 52.98 27.53

Table 12. Performance comparison between STAtten and previous
works on transfer learning using ImageNet pre-trained weights on
CIFAR-10 and CIFAR-100.

Method CIFAR-10 (%) CIFAR-100 (%)

Spikformer [64] 97.03 83.83
SpikingReformer [42] 97.40 85.98

STAtten + [53] 97.76 86.67

E. Firing rate
In this section, we present the firing rate and energy con-
sumption of each layer in Spike-driven Transformer 8-768
architecture with STAtten, pre-trained with the ImageNet
dataset. Note that the firing rates represent the firing rate of
input spikes for each layer. Additionally, for the firing rate
of Self-attention in the table below, we calculate it using the
equation: SK + SV + SQ.



Block Layer T = 1 T = 2 T = 3 T = 4 Energy (mJ)

Embedding

1st Conv - - - - 0.5982
2nd Conv 0.0771 0.1389 0.1092 0.1561 0.9015
3rd Conv 0.0424 0.0644 0.0586 0.0527 0.4089
4th Conv 0.0328 0.0501 0.0428 0.0480 0.3253
5th Conv 0.0660 0.1402 0.1308 0.1413 0.4478

Encoder-1
Q, K, V 0.2159 0.2662 0.2609 0.2728 0.3171

Self-attention 0.1221 0.1313 0.1320 0.1451 0.0993
MLP 0.2018 0.2962 0.2880 0.3454 0.1177

MLP-1 MLP1 0.3292 0.3605 0.3622 0.3697 0.5916
MLP2 0.0340 0.0409 0.0401 0.0458 0.0670

Encoder-2
Q, K, V 0.3268 0.3583 0.3543 0.3967 0.4482

Self-attention 0.0986 0.0950 0.0945 0.1017 0.0867
MLP 0.2760 0.3532 0.3371 0.3511 0.1370

MLP-2 MLP1 0.3094 0.3332 0.3321 0.3718 0.5604
MLP2 0.0226 0.0293 0.0301 0.0350 0.0487

Encoder-3
Q, K, V 0.3240 0.3462 0.3504 0.3917 0.4408

Self-attention 0.0752 0.0694 0.0680 0.0654 0.0772
MLP 0.2837 0.3409 0.3254 0.2879 0.1288

MLP-3 MLP1 0.3486 0.3519 0.3588 0.3957 0.6056
MLP2 0.0186 0.0241 0.0245 0.0255 0.0386

Encoder-4
Q, K, V 0.3532 0.3570 0.3661 0.4015 0.4613

Self-attention 0.0716 0.0707 0.0704 0.0743 0.0749
MLP 0.2586 0.3299 0.3246 0.3203 0.1283

MLP-4 MLP1 0.3591 0.3544 0.3633 0.3965 0.6132
MLP2 0.0138 0.0177 0.0183 0.0188 0.0286

Encoder-5
Q, K, V 0.3599 0.3588 0.3688 0.3979 0.4637

Self-attention 0.0701 0.0619 0.0610 0.0631 0.0694
MLP 0.2695 0.2588 0.2469 0.2187 0.1034

MLP-5 MLP1 0.3645 0.3579 0.3691 0.3979 0.6199
MLP2 0.0098 0.0126 0.0128 0.0134 0.0202

Encoder-6
Q, K, V 0.3737 0.3621 0.3706 0.3941 0.4684

Self-attention 0.0740 0.0581 0.0533 0.0496 0.0606
MLP 0.2071 0.2260 0.1896 0.1393 0.0793

MLP-6 MLP1 0.3832 0.3665 0.3743 0.3963 0.6327
MLP2 0.0108 0.0128 0.0119 0.0107 0.0193

Encoder-7
Q, K, V 0.3815 0.3665 0.3663 0.3826 0.4672

Self-attention 0.0746 0.0575 0.0538 0.0528 0.0615
MLP 0.1802 0.1670 0.1362 0.0972 0.0604

MLP-7 MLP1 0.3773 0.3574 0.3549 0.3686 0.6069
MLP2 0.0056 0.0068 0.0068 0.0063 0.0106

Encoder-8
Q, K, V 0.3772 0.3423 0.3471 0.3594 0.4452

Self-attention 0.1180 0.0853 0.0784 0.0728 0.0926
MLP 0.1383 0.1324 0.1143 0.1010 0.0505

MLP-8 MLP1 0.3684 0.3480 0.3616 0.3818 0.6075
MLP2 0.0123 0.0177 0.0168 0.0145 0.0255


	. Introduction
	. Related Works
	. Preliminary
	. Methodology
	. Motivation of Spatial-Temporal Attention
	. STAtten Mechanism
	. STAtten with Existing Spiking Transformers
	. Complexity and Energy of Self-attention

	. Experiments
	. Sequential CIFAR10/100 Classification
	. Performance Analysis
	. Memory and Energy Analysis
	. Model Capacity
	. Limitation

	. Conclusion
	. Energy Calculation Details
	. Experimental Details
	. Ablation Study
	. Timestep Combination
	. Block Size Analysis

	. Versatility in Vision Tasks
	. Object Detection
	. Transfer Learning

	. Firing rate



