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A. Dataset Description
We conduct experiments on four SSDG benchmarks. The
PACS dataset comprises four domains: art-painting, car-
toon, photo, and sketch, and includes seven classes: dog,
elephant, giraffe, guitar, horse, house, and person. The
OfficeHome dataset consists of four domains: art, cli-
part, product, and real-world, with a total of 65 classes.
The miniDomainNet dataset includes four domains: clipart,
painting, real, and sketch, and contains 345 classes. Lastly,
the DigitsDG dataset is composed of four domains: MNIST,
MNIST-M, SVHN, and SYN, and features 10 classes, rang-
ing from 0 to 9.

B. Psuedo Code Algorithm
To illustrate the detailed implementation of the UPCSC
method, we provide a pseudo code in Algorithm A. For sim-
plicity, the domain label index d, weak augmentation α, and
strong augmentation A are omitted.

C. Loss for SSL-based baseline
In this section, we give a detailed description on loss for
SSL-based baselines, such as FixMatch. SSL-based base-
lines comprise a supervised loss (Lsup) using labeled data
xl, and an unsupervised consistency loss (Lunsup) which
leverages confident-unlabeled samples xuc. Lsup is com-
puted for labeled data as follows:

Lsup = CE(softmax((h ◦ f)(xl)), yl). (6)

The unsupervised consistency loss, Lunsup, utilizes
confident-unlabeled samples xuc with pseudo-labels ŷ =
argmax(softmax((h◦f)(α(xuc)))) generated via weak aug-
mentation α. This loss ensures that the predictions for
strongly augmented samples A(xuc) are aligned with their
pseudo-labels. Formally, the unsupervised consistency loss
is computed as follows:

Lunsup = CE(softmax((h ◦ f)(A(xuc))), ŷ). (7)

D. T-SNE Visualization by Domain
In Fig. A, we provide the visualizations of t-SNE for each
domain, a more specific version of t-SNE represented in the
analysis section, Fig. 6. To explain further the visualization
procedure, the t-SNE visualization for a specific domain is
performed on a model trained with that domain as the tar-
get domain. Since the model is not accessible to the target

domain data during training, the labeled and unlabeled train
data (source data) are drawn from the remaining domains,
excluding the target domain. The data corresponding to the
target domain can only be found in the test data.

E. Detailed Visualization on Accuracy of unla-
beled train data

In Fig. B, we provide the plot on the accuracy of unlabeled
train data for each domain rather than the average which
was represented at Fig. 5.

F. More Ablation Studies on our proposed
modules

Table A summarizes the contributions of our proposed mod-
ules to overall performance in various settings. These re-
sults demonstrate that the proposed UPC and SC modules
substantially boost performance.

Table A. Ablation study of how the proposed UPC and SC modules
contribute to performance across various experimental settings.

PACS OH
Labels per class 10 5 10 5
FixMatch 76.8 73.6 57.7 55.0
+UPC 79.2 76.8 58.4 55.9
+SC 77.0 77.8 58.4 55.5
+UPCSC 79.6 78.9 58.6 56.1

G. Ablation study on UPC
Table B illustrates the importance of incorporating
unconfident-unlabeled samples xuu within the UPC mod-
ule. As shown in the table, excluding these samples yields a
1.2%p improvement over the baseline, while their inclusion
raises the margin to 2.4%p. This result clearly demonstrates
the benefit of leveraging such unconfident-unlabeled sam-
ples for performance enhancement.

H. Variants of SC module
Table C presents an ablation study on strategies for gener-
ating positive pairs from unconfident-unlabeled samples in
the SC module. Here, Top-1 denotes the results obtained by
using only the proxy of the highest-confidence class, while
Avg. Proxy represents those obtained by averaging all can-
didate class proxies. Finally, Ours is based on a weighted
average of the candidate class proxies.



Table B. Ablation study on UPC without unconfident-unlabeled
samples xuu on PACS 10 labels per class setting. Each result rep-
resents the average accuracy.

Method Accuracy (%)
FixMatch 76.8
+UPC (w/o xuu) 78.0
+UPC 79.2
+UPCSC 79.6

Table C. Comparison of different positive pair selection strategies
for SC in PACS 10 labels per class setting.

Method Top-1 Proxy Avg. Proxy Ours
FixMatch 78.9 80.5 79.6
StyleMatch 78.3 80.2 81.5

I. Additional Experiment Results
Table D shows the results of applying the plug-and-play
methods to FreeMatch as a complement to Table 4, which
presents the results of applying these plug-and-play meth-
ods to FixMatch and StyleMatch. Notably, when applied
to FreeMatch, our method demonstrates superior perfor-
mance compared to other plug-and-play approaches across
all datasets. Due to space constraints in the main text, the re-
sults for FreeMatch are included in the supplementary ma-
terial.

J. Code Asset
In Sec. 5.2, we used the benchmark introduced in
StyleMatch [32]. The code of this work is also built upon
this work. Authors thank to their open sourcing.



Table D. Comparison of various plug-and-play methods incorporated on FreeMatch [26] in SSDG under 10 labels and 5 labels per class
settings. Each result represents the average over five different random seeds.

Model Labels per class = 10 Labels per class = 5

PACS OH DigitsDG DN PACS OH DigitsDG DN

FreeMatch [26] 73.5 ± 1.1 57.7 ± 0.4 74.2 ± 2.1 54.8 ± 0.2 71.6 ± 1.8 55.9 ± 0.5 63.3 ± 2.0 52.0 ± 0.7
FreeMatch + FBCSA [9] 73.7 ± 2.3 58.6 ± 0.4 78.7 ± 0.9 55.5 ± 0.3 69.2 ± 1.4 55.8 ± 0.3 76.2 ± 1.0 51.0 ± 0.7

FreeMatch + DGWM [10] 73.3 ± 1.3 57.6 ± 0.4 74.0 ± 0.7 54.7 ± 0.3 72.2 ± 1.9 55.8 ± 0.6 62.2 ± 4.3 52.0 ± 0.5
FreeMatch + Ours 77.8 ± 1.4 59.1 ± 0.5 80.4 ± 0.7 56.5 ± 0.3 73.5 ± 2.1 56.8 ± 0.8 76.4 ± 0.6 53.7 ± 0.4

Algorithm A Pseudo Code of UPCSC

Require: Labeled data (xl, yl), unlabeled data (xu), confidence threshold τ , number of classes C, total epochs E, feature
projector pf , classifier projector pc, featurizer f , classifier h = [h1, h2, . . . , hC ], normalization operation ∥·∥, indexing
operation [·]i for selecting i-th element.

1: for epoch = 1 to E do
2: Step 1: Divide Confident-Unlabeled and Unconfident-Unlabeled Samples
3: c(x) = softmax((h ◦ f)(x))
4: xuc = {x | max(c(x)) ≥ τ, x ∈ xu}, Nuc = |xuc|
5: xuu = {x | max(c(x)) < τ, x ∈ xu}, Nuu = |xuu|
6: Step 2: Compute Pseudo Labels for Confident-Unlabeled Samples
7: ŷ = argmax(c(xuc))
8: Step 3: Define Candidate and Excluded Class Sets for Unconfident-Unlabeled Samples
9: for xuu index i = 1 to Nuu do

10: Ci = {y | [c(xuu
i )]y > 1/C}, Ei = {y | y /∈ Ci}

11: end for
12: Step 4: Compute Supervised Loss for Labeled Data
13: Lsup = CrossEntropy(c(xl)), yl)
14: Step 5: Compute Unsupervised Consistency Loss for Confident-Unlabeled Samples
15: Lunsup = CrossEntropy(c(xuc), ŷ)
16: Step 6: Compute Unlabeled Proxy-based Contrastive Loss
17: for xuc index i = 1 to Nuc do
18: zuci , wuc

i = ∥pf (f(xuc
i ))∥, ∥pc(hŷi)∥

19: LUPC += − 1
Nuc log

exp(zuc
i ·wuc

ŷi
)

exp(zuc
i ·wuc

ŷi
)+

∑
{j|ŷj ̸=ŷi}

exp(zuc
i ·zuc

j )+
∑

{j|ŷi∈Ej}
exp(zuc

i ·zuu
j ) ▷ Eq. (2)

20: end for
21: Step 7: Compute Surrogate Class Learning
22: for xuu index i = 1 to Nuu do
23: zuui , wuu

i = ∥pf (f(xuu
i ))∥, {∥pc(hj)∥ | j ∈ Ci}

24: SC(xuu
i ) =

∑C
j=1 1(j ∈ Ci) · [c(xuu

i )]j · [wuu
i ]j

25: LSC += − 1
Nuu log

exp(zuu
i ·SC(xuu

i ))
exp(zuu

i ·SC(xuu
i ))+

∑
{j|ŷj∈Ei}

exp(zuu
i ·zuc

j )+
∑

{j|Cj∩Ci=∅} exp(zuu
i ·zuu

j ) ▷ Eq. (4)

26: end for
27: Step 8: Compute Total Objective and Update Parameters
28: Ltotal = Lsup + Lunsup + LUPC + LSC
29: update(f, h, pc, pf ;Ltotal)
30: end for
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Figure A. T-SNE visualization of FixMatch and FixMatch + Ours in the PACS dataset under the 10 labels per class setting are presented for
each domain. Each sub-figure corresponds to the target domain being (a) art-painting, (b) cartoon, (c) photo, and (d) sketch, respectively.
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Figure B. Accuracy of unlabeled samples from the source domain in the PACS 10 labels per class setting for each domain.
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