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Supplementary Material

The supplementary material is organized as follows:
• Section A: Importance of the low-pass filter.
• Section B: About classifier-free guidance.
• Section C: Pseudocodes for our algorithm.
• Section D: More experimental details.
• Section E: More quantitative results: user study.
• Section F: Comparison with orthogonal methods.
• Section G: Application on DiT-based models.
• Section H: Application on I2V tasks and cross-tasks.
• Section I: Limitations.
• Section J: More qualitative examples.

A. Importance of Low-Pass Filter
To evaluate the role of the low-pass filter in our method-

ology, we conduct experiments by varying the interpolation
step I , both with and without the low-pass filter. These ex-
periments are averaged across 800 prompts from the VBench
categories for consistent evaluation. We apply the low-pass
filter for the initial 5 timesteps, based on the observation
that the mid-to-late timesteps in the diffusion process focus
on generating mid- and high-frequency details. Replacing
these frequencies with random components via the low-pass
filter in the mid-to-late timesteps would result in degraded
video quality, necessitating the early-timestep limitation. All
corresponding results are presented in Fig. 5.

We measure the effects of the filter on Subject Consis-
tency, Background Consistency, and Imaging Quality. Both
Subject Consistency and Background Consistency steadily
improves as the number of interpolation steps increases,
demonstrating the effectiveness of our interpolation scheme
in enhancing temporal coherence. Meanwhile, Imaging
Quality is maintained up to approximately 10 interpolation
steps without the low-pass filter. Beyond this point, a signif-
icant drop in quality is observed, indicating that excessive
interpolation exacerbates the blurring effects caused by pro-
longed SDS optimization, as noted earlier in this work.

The improvement in consistency is significantly accel-
erated when using the low-pass filter. This acceleration is
achieved while mitigating decline in imaging quality typi-
cally associated with increased interpolation steps. Further-
more, application of the filter reduces computational over-
head during interpolation. Specifically, consistency achieved
at I = 4 with the filter is comparable to consistency achieved
at I = 50 without the filter, offering approximately a 7-fold
reduction in inference time. Such results prove the effec-
tiveness of the filter in balancing consistency improvement,
imaging quality preservation, and computational cost.

B. Classifier-Free Guidance

Off-Manifold Behavior of CFG Recent study [7] demon-
strates that employing a high Classifier- Free Guidance
(CFG) [16] scale (w > 1.0) in the early timesteps of dif-
fusion sampling leads to off-manifold behavior. This phe-
nomenon results in denoised samples exhibiting problems
such as color saturation and abrupt transitions, which nega-
tively affect the interpolation between samples during these
timesteps. We solve this by applying a lower guidance scale
w during the early stages of sampling, ensuring smoother
interpolation between the denoised samples. As illustrated
in Fig. 6 (a), when using a high CFG scale (w = 7.5), the
influence of the guiding diffusion model becomes minimal
due to significant color saturation, making it difficult for
the output of the guiding model to be reflected effectively.
In contrast, as illustrated in Fig. 6 (b), a lower CFG scale
(w = 0.8) facilitates smoother interpolation between the
sampling diffusion model and the guiding diffusion model.

Configuration SC (↑) BC (↑)

Base
+ CFG 0.9183 0.9437
+ CFG++ 0.9176 0.9435

FreeInit
+ CFG 0.9487 0.9604
+ CFG++ 0.9473 0.9604

Ours
+ CFG Interp. 0.9598 0.9635
+ CFG++ Interp. 0.9614 0.9664

Table 5. Comparison of consistency metrics (SC: Subject Consis-
tency, BC: Background Consistency) across different configura-
tions using CFG and CFG++ in AnimateDiff. Our approach with
interpolated CFG++ achieves the best performance, significantly
enhancing both subject and background consistency.

We provide quantitative analysis for using CFG and CFG++
across the Base Model, Base Model + FreeInit, and Base
Model + VideoGuide (Ours) during the interpolation. As
shown in Tab. 5, metrics for Base and FreeInit decrease when
CFG++ is used, and metrics improve only when CFG++
is applied to our interpolation scheme. This implies the
significant positive impact on consistency of CFG++ within
the proposed interpolation scheme, especially compared to
CFG. Also, this supports the idea that smooth interpolation
of denoised samples positively impacts model performance,
as discussed above.



Figure 5. Comparison of Subject Consistency, Background Consistency, and Imaging Quality across interpolation steps (I) with and without
the application of the low-frequency filter. Results indicate that the low-frequency filter accelerates convergence towards consistency while
maintaining imaging quality.

Figure 6. (a) The interpolation process between denoised samples
from the sampling model (S) and the guiding model (G) for high
guidance scale w = 7.5 is shown. (b) The interpolation process
for low guidance scale w = 0.8 is shown. Both interpolations are
performed at T = 980 and β = 0.7. Results indicate that with
high guidance scale w, influence of the guiding diffusion model is
significantly reduced due to color saturation.

C. Pseudocodes
Pseudocodes regarding our algorithm are provided. For
clarity, the pseudo code describing our algorithm adopts the
CFG++ reverse sampling framework for the entire process.

D. Experimental Details
D.1. Prompt Selection
In all experiments, we utilize 800 prompts from various
categories in VBench [19] to evaluate the model’s ability to
generate across diverse categories.

D.2. Hyperparameter Selection
We employ a classifier-free guidance (CFG) scale of 7.5
during inference for both base models (AnimateDiff, LaVie)
and FreeInit-applied cases. During interpolation of the de-
noised samples, we apply CFG++ reverse sampling with a

guidance scale of w = 0.8 in DDIM 50-step sampling. After
completing the interpolation step, we revert to CFG reverse
sampling with a CFG scale of 7.5. In FreeInit, we use a
Butterworth filter with a normalized frequency of 0.25, filter
order n = 4, and perform 5 iterations, as recommended in
prior work. The same filter is applied in our experiments
with FreeInit. For AnimateDiff, we configure the guiding
model with parameters I = 5, β = 0.5, and τ = 10. In
the case of LaVie, we set I = 3, β = 0.5, and τ = 10
to optimize inference speed. Additionally, the τ intervals
are not uniformly spaced as in the standard 50-step DDIM
sampling. To better leverage temporally consistent samples,
we divide the remaining interval into 25 steps for reverse
sampling during guidance steps.

D.3. Figure Explanation
Base models used for Figure 3:
(a) AnimateDiff with pretrained T2I model RealisticVision.
(b) AnimateDiff with pretrained T2I model RealisticVision.
(c) LaVie.
(d) LaVie.
Base model used for Figure 4:
AnimateDiff with pretrained T2I model ToonYou.

E. User Study

We conduct a user study to evaluate generated video samples
using three criteria: Text Alignment, Overall Quality, and
Smooth and Dynamic Motion, with all metrics scored on
a 1 to 5 scale. A total of 30 participants provided ratings
for each metric, offering comprehensive feedback on the
generated videos. Tab. 6 shows that our method surpasses
the baseline and previous work in all evaluated aspects.
Text Alignment
• Measures how well the video corresponds to the prompt,



Algorithm 1 VideoGuide with Sampling Diffusion Model

Require: guidance scale λ ∈ [0, 1], guiding steps I , interpolation scale β, extra step τ
1: Initialize zT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: ϵ̂θ(zt, t) = ϵθ(zt, t, ϕ) + λ[ϵθ(zt, t, c)− ϵθ(zt, t, ϕ)]
4: z0|t = (zt −

√
1− ᾱtϵ̂θ(zt, t))/

√
ᾱt

5: zt =
√
ᾱtz0|t +

√
1− ᾱtϵ, where ϵ ∼ N(0, I)

6: if T − t < I then
7: for j = 0, . . . , τ do
8: zt−j−1 =

√
ᾱt−j−1z0|t−j +

√
1− ᾱt−j−1ϵθ(zt−j , t− j, ϕ)

9: end for
10: z′

0|t = β · z0|t + (1− β) · z0|t−τ
11: zt−1 =

√
ᾱt−1z

′
0|t +

√
1− ᾱt−1ϵθ(zt, t, ϕ)

12: zt−1 = LPFγ(zt−1) + HPFγ(ϵ), where ϵ ∼ N(0, I)
13: else
14: zt−1 =

√
ᾱt−1z0|t +

√
1− ᾱt−1ϵθ(zt, t, ϕ)

15: end if
16: end for
17: Output: Final video z0

Algorithm 2 VideoGuide with Guiding Diffusion Model

Require: guidance scale λ ∈ [0, 1], guiding steps I , interpolation scale β, extra step τ , Guiding Model G parameterized by ψ,
noise schedule ᾱ(G) of G

1: Initialize zT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: ϵ̂θ(zt, t) = ϵθ(zt, t, ϕ) + λ[ϵθ(zt, t, c)− ϵθ(zt, t, ϕ)]
4: z0|t = (zt −

√
1− ᾱtϵ̂θ(zt, t))/

√
ᾱt

5: z
(G)
t =

√
ᾱ
(G)
t z0|t +

√
1− ᾱ

(G)
t ϵ, where ϵ ∼ N(0, I)

6: if T − t < I then
7: for j = 0, . . . , τ do
8: z

(G)
0|t−j = (z

(G)
t−j −

√
1− ᾱ

(G)
t−j ϵ̂ψ(z

(G)
t−j , t− j)/

√
ᾱ
(G)
t−j

9: z
(G)
t−j−1 =

√
ᾱ
(G)
t−j−1z

(G)
0|t−j +

√
1− ᾱ

(G)
t−j−1ϵψ(z

(G)
t−j , t− j, ϕ)

10: end for
11: z′

0|t = β · z0|t + (1− β) · z(G)
0|t−τ

12: zt−1 =
√
ᾱt−1z

′
0|t +

√
1− ᾱt−1ϵθ(zt, t, ϕ)

13: zt−1 = LPFγ(zt−1) + HPFγ(ϵ), where ϵ ∼ N(0, I)
14: else
15: zt−1 =

√
ᾱt−1z0|t +

√
1− ᾱt−1ϵθ(zt, t, ϕ)

16: end if
17: end for
18: Output: Final video z0

focusing on semantic coherence.
• Question: Do you think the videos reflect the given text

condition well? (5: Strongly Agree / 4: Agree / 3: Neutral
/ 2: Disagree / 1: Strongly Disagree)

Overall Quality
• Assesses the video’s visual consistency, image degradation,

and aesthetic appeal.

• Question: Do you think the video’s overall quality is good?
(rich detail, unchanging objects) (5: Strongly Agree / 4:
Agree / 3: Neutral / 2: Disagree / 1: Strongly Disagree)

Smooth and Dynamic Motion
• Evaluates the naturalness and fluidity of the motion in the

video.
• Question: Do you think the video’s overall motion is



smooth and dynamic? (5: Strongly Agree / 4: Agree /
3: Neutral / 2: Disagree / 1: Strongly Disagree)

Method TA OQ SDM

Base 3.72 2.84 2.9
Base + FreeInit 3.97 3.35 3.38
Base + VideoGuide (Ours) 4.36 4.37 4.36

Table 6. User Study. Text Alignment (TA), Overall Quality (OQ),
Smooth and Dynamic Motion (SDM) are evaluated among methods.
Bold: best, underline: second best.

F. Comparison with Orthogonal Methods
A recent study, UniCtrl [4], attempts to improve semantic
consistency and motion quality in an approach orthogonal to
ours. In this section, we compare the performance of each
technique and assess the feasibility of combining them. Fol-
lowing the recommendation in the paper, we use a motion
injection degree of c = 0.2, while maintaining the same
experimental configuration as described in Section D. As
illustrated in Tab. 7, UniCtrl [4] improves temporal consis-
tency but at the cost of a significant reduction in dynamic
degree and imaging quality.

G. Application on DiT-based Models
We further evaluate the robustness of our methodology by
applying it to different architectures and schedulers. Specif-
ically, we present further evaluation on models that use
Diffusion Transformer (DiT) [26] architecture: Open-Sora
v1.0 [39] and Open-Sora v1.2 [39]. Each model employs a
standard DDIM scheduler (50 steps) and a rectified flow [25]
scheduler, respectively. In the rectified flow-based configura-
tion, the objective for training can be formulated as follows:

zt = (1− t)z0 + tϵ where t ∈ [0, 1]

θ̂ = argmin
θ

E
[
||(z0 − ϵ)− vθ(zt, t)||22

] (17)

Using the objective above we can redefine our method as
below:

z0|ti = zti + ti · vθ(zti , ti)
ϵθ(zti , ti) = zti − (1− ti) · vθ(zti , ti)

zti−1
= (1− ti−1)f(z0|ti , β, τ) + ti−1ϵθ(zti , ti)

(18)
where f(z0|ti , β, τ) is the interpolation function between
z0|ti and z0|ti−τ

with scale β. The results in Tab. 8 demon-
strate that our method improves temporal consistency for
both baselines while preserving imaging quality and intro-
ducing only a minimal decrease in dynamic degree. These
findings indicate that our method enhances performance re-
gardless of the underlying architecture and scheduler.

H. Application on I2V Tasks and Cross-Tasks
Application to the I2V task by using VideoGuide self-
guidance on DynamiCrafter [36] is shown in Tab. 9. Quan-
titative comparison is done on 355 image prompts, and the
metric Video-Image Alignment (DINO feature similarity
between the given image and generated video) is used in
addition to the previous metrics.

Moreover, we explore cross-task functionality in student
T2V and teacher I2V models. Fig. 10 shows a specific ex-
ample in which the student T2V model is VideoCrafter2 and
the teacher I2V model is DynamiCrafter with null text input.
Our method guides VideoCrafter2 to creating samples that
resemble that of the image input into DynamiCrafter even
though the image is never explicitly shown to VideoCrafter2.
Thus, VideoGuide can enable T2V generation to operate un-
der auxiliary image awareness, which opens up new avenues
such as usage of VideoGuide in image editing.

I. Limitations
While our approach significantly improves the performance
of baseline models, it relies on sharing the same Variational
Auto-Encoder (VAE) [23] space. In practice, many latent dif-
fusion models utilize the same VAE, making this requirement
generally feasible. However, if the VAE spaces differ, one
potential solution is to decode, interpolate, and re-encode the
features. This process, however, incurs additional computa-
tional overhead and risks losing fine details due to iterative
encoding-decoding. Developing an effective method to ad-
dress compatibility across different VAE spaces remains an
avenue for future research.

J. More Qualitative Examples
Additional samples are provided in following pages:
• Supplemental examples of prior distillation.
• Qualitative comparison for various methods.
• Qualitative comparison for various base models.
• Usage of VideoGuide to solve sudden frame shifts in LaVie

samples.

J.1. Prior Distillation
J.2. More Qualitative Comparison Results
J.3. More Qualitative Results
J.4. LaVie Sudden Shift



Method Subject
Consistency (↑)

Background
Consistency (↑)

Imaging
Quality (↑)

Motion
Smoothness (↑)

Dynamic
Degree (↑)

AnimateDiff [13] 0.9183 0.9437 0.6647 0.9547 26.67

AnimateDiff + UniCtrl [4] 0.9259 0.9413 0.6032 0.9584 14.96

AnimateDiff + Ours 0.9614 0.9664 0.6671 0.9772 16.78

AnimateDiff + UniCtrl + Ours 0.9639 0.9628 0.5883 0.9776 5.02

Table 7. Quantitative comparison with orthogonal methods.

Method Subject
Consistency (↑)

Background
Consistency (↑)

Imaging
Quality (↑)

Motion
Smoothness (↑)

Dynamic
Degree (↑)

OpenSora v1.0 [39] (DDIM [30]) 0.9735 0.9689 0.6615 0.9678 4.97

OpenSora v1.0 + VideoGuide (self-guided) 0.9763 0.9689 0.6738 0.9754 3.88

OpenSora v1.2 [39] (Rectified Flow [25]) 0.9725 0.9696 0.6582 0.9881 12.68

OpenSora v1.2 + VideoGuide (self-guided) 0.9808 0.9748 0.6689 0.9903 11.07

Table 8. Quantitative comparison of video generation in DiT-based architecture.

Method Subject
Consistency (↑)

Background
Consistency (↑)

Imaging
Quality (↑)

Motion
Smoothness (↑)

Dynamic
Degree (↑)

Video-Image
Alignment (↑)

DynamiCrafter [36] 0.9663 0.9644 0.7042 0.9839 3.93 0.9535

DynamiCrafter + VideoGuide (self-guided) 0.9681 0.9654 0.7065 0.9840 3.94 0.9553

Table 9. Quantitative comparison for the self-guided I2V task.

Figure 7. Qualitative Comparison of UniCtrl and VideoGuide.



Figure 8. Qualitative Results of VideoGuide on Open-Sora v1.0.

Figure 9. Qualitative Results of VideoGuide on Open-Sora v1.2.

Figure 10. Cross-task functionality of student T2V and teacher I2V models.



Figure 11. Prior Distillation. For each prompt, we share the same random seed for both methods.



Figure 12. More Qualitative Comparison Results of VideoGuide. Top: AnimateDiff with ToonYou, Bottom: AnimateDiff with RCNZCartoon



Figure 13. More Qualitative Results of VideoGuide on AnimateDiff (with RealisticVision).



Figure 14. More Qualitative Results of VideoGuide on AnimateDiff (with RealisticVision).



Figure 15. More Qualitative Results of VideoGuide on AnimateDiff (with ToonYou).



Figure 16. More Qualitative Results of VideoGuide on AnimateDiff (with RCNZCartoon).



Figure 17. More Qualitative Results of VideoGuide on AnimateDiff (with FilmVelvia).



Figure 18. More Qualitative Results of VideoGuide on LaVie.



Figure 19. More Qualitative Results of VideoGuide on LaVie.



Figure 20. VideoGuide helps solve the issue of sudden frame shifts in LaVie samples. By integrating an external guiding model, VideoGuide
provides smoother frame transitions to the base model. LV indicates that guidance model of LaVie is used (the self-guided case), and VC
indicates that guidance model of VideoCrafter2 is used. Guidance given with the external model VideoCrafter2 solves sudden frame shift
unsolvable by other methods.
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