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Supplementary Material

In the supplementary materials, we provide additional

details about the metrics, methods, and training process,

along with a more extensive and diverse set of qualitative

results. Since our work focuses on video generation, we

also present the corresponding video outputs on an anony-

mous website (please click https://yu-shaonian.

github.io/Animate_Anything/). This allows for

a clearer demonstration of the overall visual quality of gen-

erated videos and provides a clearer view of temporal-scale

variations.

A. Trajectory Evaluation

To evaluate the accuracy of camera motion guidance, we

first extract the camera trajectories of generated videos and

then apply two metrics to evaluate the alignments between

the input camera trajectories and the extracted ones.

A.1. Trajectory Extraction

Since estimating camera poses inherently involves potential

errors and uncertainties, to ensure the accuracy of pose esti-

mation and maintain fairness in comparison, we employed

three different methods to estimate camera poses and com-

pared them with corresponding poses from similar methods,

evaluated under the same conditions. The adopted camera

pose estimation methods are VGGSfM [4], DUSt3R [5],

and ParticleSfM [8]. It should be noted that CameraC-

trl [1] had estimated camera poses directly using the clas-

sical COLMAP [3]. However, it achieved only about a 20%

success rate when tested in real-world scenarios. 1

A.2. Evaluation Metrics

Similar to He et al. [1], Wang et al. [6], we adopt rotation

error and translation error to evaluate the scale and dif-

ferences in the rotation and translation terms of the camera

matrix. The specific evaluation metrics are as follows:

• Rotation Error Rerr: The relative rotation distances are

then converted to radians, and we sum the total error

across all frames,

Rerr =

n∑

i=1

arcos(
tr(RT

outi
Rgti)− 1

2
) (1)

• Translation Error Terr: The norm of the relative trans-

lation vector for each frame is also summed together to

form the translation error of the whole video,

Terr =

n∑

i=1

∥Touti − Tgti∥2 (2)

1We have confirmed this point with the original authors of CameraCtrl.

B. Objects Controllability Evaluation.

Following DragAnything [7], we evaluate object motion

control (ObjMC) by computing the Euclidean distance be-

tween ground truth and predicted object trajectories ex-

tracted using Co-Tracker [2]. Tab. A demonstrates the ef-

fectiveness of our approach in object-level motion control.

C. More Details For Frequency Stabilization

As shown in Fig.4, we apply the Fast Fourier Transform to

the Query (Q), Key (K), and Value (V) of the 3D Full Atten-

tion mechanism in each DiT block. Next, the frequency do-

main features are modulated by the weight matrix W with

a pixel-wise production to adjust the distributions of differ-

ent features. After modulation, we perform the inverse Fast

Fourier Transform to revert them to the original domain.

Finally, we execute the standard Scaled Dot-Product Atten-

tion operation to obtain the output of our frequency-based

stabilization module. This method enhances the model’s

ability to capture frequency-based interactions among to-

kens in the input sequence as shown in Fig. B. We observed

that incorporating these learnable frequency stabilization

modules significantly enhanced the model’s stability. How-

ever, directly analyzing the changes in the weight matrices

proved to be quite challenging. We have attempted to an-

alyze the functional mechanisms of the weight matrix W

using numerical or visual analytical approaches, but the in-

terpretability of these frequency-domain interaction mecha-

nisms remains an open research question due to the inherent

challenges in accurately characterizing spectral features.

D. More Training Details

We conducted experiments on a server equipped with 8×
NVIDIA Tesla A800 80G GPUs. We use AdamW opti-

mizer for both the flow generation and video generation

stages. In the first stage, we train the flow generation net-

work with a learning rate 1e−4, batch size 1 per GPU, and

a linear warming up of 500 steps. The whole training takes

50,000 steps and training with fixed-camera direction takes

10,000 steps. In the second stage, we train the frequency-

based stabilization module, the flow encoder and the Vit

block of our base network for 20,000 steps with batch size 2

per GPU to enable the video generation network to support

our unified optical flow input.

E. More Qualitative Results

In this section, we provide additional qualitative exper-

iments to further demonstrate the effectiveness of our



Table A. Objects controllability evaluation.

DragAnything MotionCtrl Motion-I2V MOFA-Video DragNUWA Ours

ObjMC↓ 382 432 397 351 405 315

Figure A. combining both camera and explicit control.

method.

Various User Annotations. Our methods support diverse

and fine-grained user motion annotation for detailed motion

control. In Fig. C, we demonstrate the generated results

of controlling fine-grained local motion of a toy bear with

arrow-based motion annotation. The results show that our

method is capable of subtle annotations and can accurately

generate corresponding motion videos while maintaining a

stable background.

Camera Guidance. In Fig. D, we showcase additional re-

sults of camera motion control, including the generation of

various camera trajectories for the same outdoor building.

We also present examples of applying diverse camera mo-

tions to dynamic outdoor scenes shown in Fig. E.

Human Face Animation. In Fig. F, we demonstrate that

our method can effectively drive facial motions with dif-

ferent reference face images, using optical flows extracted

from a reference facial motion video.

Style Transfer. Fig. G showcases the inherent capability of

our method to perform video style transfer without any ad-

ditional refinement. We first extract the optical flow and the

first frame of a reference video, and then utilize the flow to

animate the transformed version of the specific frame. The

high-quality generated videos demonstrate the effectiveness

of our method in the video style transformation task.

F. Limitation and Improvement Strategies

Our research on video generation using unified optical flow

representation encounters several technical and practical

challenges. First, the accuracy of pre-trained optical flow

estimation models can significantly impact the quality of

the generated videos. Second, completely decoupling cam-

era motion from object motion is an extremely challenging

task as shown in Fig. A, and this process heavily relies on

high-quality datasets. Furthermore, the diversity and qual-

ity of the training data may also influence the model’s per-

formance in specific applications. To tackle these issues,

we will investigate methods to enhance the model training

process, including utilizing higher-quality datasets and im-

plementing improved decoupling strategies, to boost the ac-

curacy and performance of video generation.

G. Social Impact

Our research utilizes a unified optical flow representation to

achieve camera motion or drive arbitrary subjects in video

generation. This technology will enhance the efficiency of

video production, fostering innovation in industries such as

film and gaming while creating more engaging entertain-

ment and educational experiences. However, as the technol-

ogy becomes more widespread, society may face ethical and

legal challenges, including issues related to the authenticity

of video content and copyright. Therefore, establishing ap-

propriate management regulations to ensure the responsible

use of this technology is an important task that we must ad-

dress.



Figure B. Visual examples of frequency stabilization(Top without)
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Figure C. Various kinds of User Annotations.



Figure D. The qualitative results of camera trajectory guided video generation with the same building image. The red box is the input

reference images.

Figure E. The qualitative results of camera trajectory guided video generation on wild dynamic animals. The red box is the input reference

images.



Figure F. The qualitative results of human face animation driven by the same facial motion video (Top). The red box is the reference image

and the estimated optical flow maps.



Figure G. The qualitative results of video style transfer. The red boxes are the input reference images.


