
Instant Adversarial Purification with Adversarial Consistency Distillation

Supplementary Material

1. Appendix

1.1. Additional implementation details

We implement our method with Pytorch [3] and Diffusers.
we fix the random seed of PyTorch’s generator as 100 for re-
producibility [4]. For all implementations, we use the stan-
dard version of AutoAttack, which is the same in both the
main paper and the appendix.

We leverage LCM-LoRA [2] and TCD-LoRA [8] from
their HuggingFace repositories.

In terms of training with our proposed GAND, we use
the Stable Diffusion v1.5 (SD15) as the teacher model.

We borrow a part of code and pretrained weights from
AMT-GAN when we do experiments on CelebA-HQ. We
also conduct a series of IQAs to evaluate the quality of pu-
rified images. To be specific, we leverage:
• PSNR: Range set to 1, aligning with PyTorch’s image

transformation.
• SSIM [6]: Gaussian kernel size set to 11.
• LPIPS [7]: Utilizing VGG [5] as the surrogate model.

Experimenting our method in defending Fog [1]: We set
the number of iterations to 10, ϵ to 128, and step size to
0.002236. Snow [1]: We set the number of iterations to 10,
ϵ to 0.0625, and step size to 0.002236. L2-PGD: We set the
number of iterations to 100, ϵ to 0.5, and step size to 0.1.

It is worth noting that we borrow the implementa-
tion of PSNR from TorchEval. Unless mentioned, all
reproducibility-related things follow the above.

1.2. Proofs

We are going to provide some simple proofs for things we
have claimed, including
1. z∗

t → z when t → 0,
2. z∗

t → ϵ+ δadv when t → T
3. fθ(zadv(t),∅, t) → zadv when t → 0
4. fθ(zadv(t),∅, t)− fθ(z(t),∅, t) → δadv when t → 0

Lemma. If X ∼ N (µ, σ2) and σ2 → 0, then X → µ

Proof. For any ϵ > 0,

P (∥X − µ∥ ≥ ϵ) = P (∥Z∥ ≥ ϵ) Z ∼ N (0, σ2)

≤ E(X2)

ϵ2

=
V ar(X) + (E(X))2

ϵ2

=
σ2

ϵ2

→ 0.

(1)

The first line to the second line is true by Markov’s inequal-
ity. Hence, we prove that normal distribution with a vanish-
ing variance will converge in probability to its mean.

Proof 1. βt is increasing sequence in t ∈ {0, 1, · · · , T −
1, T} in range (0, 1), then we have αt = 1−βt is decreasing
sequence in t ∈ {0, 1, · · · , T − 1, T} in range (0, 1), ᾱt is
decreasing step function in range (0, 1), further assume β0

is a arbitrarily small number:

lim
t→0

z∗
t = lim

t→0

√
ᾱtz +

√
1− ᾱt(ϵ+ δadv)

=
√
α0z +

√
1− α0(ϵ+ δadv)

=
√

1− β0z +
√
β0ϵ+

√
β0δadv

→ z +
√

β0ϵ.

(2)

The third line to the fourth line is true by assumption on
β0, and since we know z +

√
β0ϵ ∼ N (z, β0I) and β0 is

vanishing. By lemma, we have z∗
t → z.

Proof 2. βt is increasing sequence in t ∈ {0, 1, · · · , T −
1, T} in range (0, 1), then we have αt is decreasing se-
quence in t ∈ {0, 1, · · · , T − 1, T} in range (0, 1), ᾱt is
decreasing step function in range (0, 1), further assume T
is a arbitrarily large number and βT/2 > c where constant
c ∈ (0, 1), consider δadv as constant.

ᾱT =

T∏
t=0

αt

=

T∏
t=0

(1− βt)

=

T/2∏
t=0

(1− βt)

T∏
t′=T/2+1

(1− βt′)

≤ (1− c)T/2

T/2∏
t=0

(1− βt)

→ 0,

lim
t→T

z∗
t = lim

t→T

√
ᾱtz +

√
1− ᾱt(ϵ+ δadv)

= ϵ+ δadv ∼ N (δadv, I).

(3)

(1−β0)
T+1 converge to 0 by assuming T is arbitrarily large.

Proof 3. βt is increasing sequence in t ∈ {0, 1, · · · , T −
1, T} in range (0, 1), then we have αt is linear decreasing
sequence in t ∈ {0, 1, · · · , T − 1, T} in range (0, 1), ᾱt

is decreasing step function in range (0, 1), further assume
ϵ̂ has standard Gaussian distribution and β0 is a arbitrarily
small number,

https://huggingface.co/latent-consistency/lcm-lora-sdv1-5
https://huggingface.co/h1t/TCD-SD15-LoRA
https://huggingface.co/runwayml/stable-diffusion-v1-5
https://github.com/CGCL-codes/AMT-GAN
https://github.com/Po-Hsun-Su/pytorch-ssim
https://github.com/richzhang/PerceptualSimilarity
https://pytorch.org/torcheval/stable/


lim
t→0

fθ(zadv(t),∅, t)

= lim
t→0

σ2

t2 + σ2
zadv(t)

+
t2√

t2 + σ2

(
zadv(t)−

√
1− ᾱtϵ̂θ(zadv(t), c, t)√

ᾱt

)
= lim

t→0

σ2

t2 + σ2
zadv(t)

+ lim
t→0

t2√
t2 + σ2

(
zadv(t)−

√
1− ᾱtϵ̂√

ᾱt

)
= lim

t→0

√
ᾱtzadv +

√
1− ᾱtϵ− lim

t→0

t2√
t2 + σ2

(√
1− ᾱtϵ̂√

ᾱt

)
=
√
α0zadv +

√
1− α0ϵ− lim

t→0

t2√
t2 + σ2

(√
1− α0ϵ̂√

α0

)
=zadv +

√
β0ϵ− lim

t→0

t2√
t2 + σ2

(√
β0

)
ϵ̂

=zadv + lim
t→0

√(
1 +

t4

t2 + σ2

)
β0ϵ.

(4)

The second last line is from assumption on β0 and
the last line is from the property of normal distribu-
tion and assumption on ϵ̂. Finally, by the fact that

limt→0

√(
1 + t4

t2+σ2

)
β0 = 0 and lemma we have proved,

we prove fθ(zadv(t),∅, t) → zadv .
Proof 4. Following a similar way in proof 3, we have

lim
t→0

fθ(z(t),∅, t)

=z + lim
t→0

√(
1 +

t4

t2 + σ2

)
β0ϵ,

lim
t→0

fθ(zadv(t),∅, t)− fθ(z(t),∅, t)

=zadv − z + lim
t→0

√
2

(
1 +

t4

t2 + σ2

)
β0ϵ

→zadv − z = δadv.

(5)

The last line uses the definition of δadv .

1.3. Experiment

In Fig. 1, we test the robustness of another model that can
do few steps generation, Trajectory consistency distillation
(TCD) [8], which can also generate an image in one step.
We can see that using LCM as a purification model is gen-
erally more robust than using TCD. Also, the standard ac-
curacy of the two models is similar. Therefore, we choose
LCM as our backbone model for purification instead of
TCD.

Figure 1. Accuracy (%) using LCM and TCD model as defense
model under L∞-PGD attack on ImageNet.

Figure 2. Accuracy (%) on different purification time step t∗ on
our method. Two figures have the same attack setting, PGD-100
L∞γ (γ = 4/255), step size 0.01 * 4/255, where both we evaluate
on ResNet50 on 500 images subset of ImageNet.

Table 1. Inference time (s) of our method on different inference
time and resolution

Method Resolution t∗ = 20 t∗ = 60 t∗ = 100 t∗ = 250 t∗ = 500

DiffPure 256×256 ∼ 2 ∼ 6 ∼ 10 ∼ 24 ∼ 45
DiffPure 512×512 ∼ 6 ∼ 17 ∼ 27 ∼ 70 ∼ 140
DiffPure 1024×1024 ∼ 30 ∼ 85 ∼ 145 ∼ 360 ∼ 720

Ours 256×256 ∼ 0.05 ∼ 0.05 ∼ 0.05 ∼ 0.05 ∼ 0.05
Ours 512×512 ∼ 0.1 ∼ 0.1 ∼ 0.1 ∼ 0.1 ∼ 0.1
Ours 1024×1024 ∼ 0.5 ∼ 0.5 ∼ 0.5 ∼ 0.5 ∼ 0.5

In Fig. 2, we show the experiment for choosing the pu-
rification time step on ImageNet. Our model achieved the
best performance at t∗ = 200 in both standard accuracy and
robust accuracy. Hence, we decide to choose t∗ = 200 for
our method on ImageNet.

In Tab. 1, we further test the inference time of our
method on three resolutions without resizing on an NVIDIA
F40 GPU. This result showcases that if our GAND weights



P1 P2 P3 P4 P5

Figure 3. Visualization of T2I (text to image) generation in different text prompts making use of our GAND weight. P1: A gorgeous
ship sails under a beautiful starry sky. P2: Cradle chair, a huge feather, sandy beach background, minimalism, product design, white
background, studio light, 3d, iso 100, 8k. P3: In a serene, snowy landscape, an elderly man in a straw raincoat and hat fishes alone on
a small wooden boat in a calm, cold river. Surrounded by snow-covered trees and mountains, the tranquil scene conveys harmony with
nature and quiet isolation. Masterpiece. Chinese art. extreme details. P4: Self-portrait oil painting, a beautiful cyborg with golden hair, 8k.
P5: Astronauts in a jungle, cold color palette, muted colors, detailed, 8k

0 200 400 600 800 1000
t

0.0

0.2

0.4

0.6

0.8

1.0

t

Figure 4. Visualization of how the term ᾱt change by t

are trained on those resolutions, what will the inference
time of our method be. As shown in Tab. 1, DiffPure takes
around 12 minutes to purify a 1024×1024 image when t∗

is chosen to be 500. Meanwhile, our method only takes
0.5 seconds to purify a 1024×1024 image on any t∗, show-
ing the potential of our method for purification in high-
resolution images since our method does the purification in
the latent space, which is much more efficient than pixel
space.

In Fig. 4, we show how ᾱt variate by t in the LCM sched-
uler. We can see that the value of ᾱt starts at almost 1
(t = 0) and decreases to almost 0 (t = 1000), which meets
with the assumptions we have made in our proofs.

In Tab. 2, we conducted four more attack methods on 500

Table 2. Standard accuracy and robust accuracies against unseen
threat models on ResNet-50, L2-PGD, StAdv, Snow, Fog

Method Standard L2-PGD StAdv Snow Fog

DiffPure 80.8% 80.6% 69.4% 77.2% 77.8%
Ours 82.4% 81.6% 69.8% 79.8% 77.8%

images subset of ImageNet; we can see that our method is
generally more robust than DiffPure, which is 1% and 2.6%
higher than DiffPure when defending L2-PGD and Snow. A
slightly higher robust accuracy in defending StAdv and the
same robust accuracy in defending Fog. Also, our method
has a higher standard of accuracy, which is 1.6% higher than
DiffPure, showing that our method prevents semantic loss in
the purification process. In Fig. 5, we provide more visual
examples.

Although our goal is purification, it is still interesting for
us to visualize the image generated by our GAND weight.
We use LCM-LoRA and change their LoRA to our GAND
LoRA weight. Then, we generate pictures by text prompt
P1 (ship), P2 (chair), P3 (elderly man), P4 (Girl), and P5
(Astronauts); the full-text prompt is shown in the caption
of Fig. 3. We can see that our LCM-LoRA (GAND) still
maintains generability; this is a surprising result and shows
that our objective might be useful for some img2img tasks
if people edit our objective correctly for their task.

https://huggingface.co/docs/diffusers/api/schedulers/lcm
https://huggingface.co/docs/diffusers/api/schedulers/lcm


(a) (b) (c) (d)
Figure 5. Visualization of the experiment L2-PGD, StAdv, Snow, Fog respectively, which compares with DiffPure and the proposed
method. (a) Input image. (b) Adversarial image. (c) DiffPure. (d) Ours. The last row presents the proposed method (a) Input image (b)
Adversarial image (c) Edge image (d) Purified Image



References
[1] Max Kaufmann, Daniel Kang, Yi Sun, Steven Basart, Xuwang

Yin, Mantas Mazeika, Akul Arora, Adam Dziedzic, Franziska
Boenisch, Tom Brown, et al. Testing robustness against un-
foreseen adversaries. arXiv preprint arXiv:1908.08016, 2019.
1

[2] Simian Luo, Yiqin Tan, Suraj Patil, Daniel Gu, Patrick von
Platen, Apolinário Passos, Longbo Huang, Jian Li, and Hang
Zhao. Lcm-lora: A universal stable-diffusion acceleration
module. arXiv e-prints, pages arXiv–2311, 2023. 1

[3] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. Ad-
vances in Neural Information Processing Systems, 32, 2019.
1

[4] David Picard. Torch. manual seed (3407) is all you need: On
the influence of random seeds in deep learning architectures
for computer vision. arXiv preprint arXiv:2109.08203, 2021.
1

[5] K Simonyan and A Zisserman. Very deep convolutional net-
works for large-scale image recognition. In International
Conference on Learning Representations, 2015. 1

[6] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE Transactions on Image Processing,
13(4):600–612, 2004. 1

[7] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep fea-
tures as a perceptual metric. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR),
2018. 1

[8] Jianbin Zheng, Minghui Hu, Zhongyi Fan, Chaoyue Wang,
Changxing Ding, Dacheng Tao, and Tat-Jen Cham. Trajectory
consistency distillation. arXiv preprint arXiv:2402.19159,
2024. 1, 2


	. Appendix
	. Additional implementation details
	. Proofs
	. Experiment


