
OffsetOPT: Explicit Surface Reconstruction without Normals

Supplementary Material

8. Additional ablation study

Table 7 presents the comparison of reconstruction accuracy
for different offset initializations discussed in §4.3.
Voxel sizes. We examine how voxel size affects the recon-
struction accuracy using 100 shapes from Thingi10k [51].
Each input point cloud consists of 0.1 million randomly
sampled points. We normalize the points to fit within a unit
sphere, and reconstruct each sample with OffsetOPT using
voxel sizes ranging from 0.01 to 0.05. We plot in Fig. 6(left)
the variations in CD1 and F1 score to show how the recon-
struction accuracy drops as voxel size increases.
Data noise. Using the same Thingi10k point clouds,
we further evaluate the effect of data noise on Offse-
tOPT. Specifically, we add varying levels of Gaussian noise
(i.e., �2{0, 0.001, 0.002, 0.003, 0.005, 0.1}) to create noisy
point clouds. Figure 6(right) illustrates our performance as
noise increases in the shapes. We note that computational
reconstruction methods use noisy points directly as mesh
vertices in the reconstructed surface, resulting in reduced
robustness to noise compared to implicit methods.

Figure 6. Ablation studies. (left) Effects of voxel sizes on recon-
struction quality. (right) Method robustness to data noise.

KNN influence. We always sort the KNN points by dis-
tances (§3.1). In the training set, since distant points receive
the label 0 in the ground-truth matrices O⇤, the model learns
to discourage problematic edges or triangles itself in stage
one. To illustrate, we train another model using K=100 and
test it on FAUST and MGN. The results are similar to those
of K=50, shown in Table 6. We suggest 50 for efficiency.

Table 6. Different K in KNN for reconstruction accuracy.

KNN FAUST MGN
CD1# CD2# F1" NC" NR# CD1# CD2# F1" NC" NR#

K=50 0.217 0.301 0.996 0.985 4.038 0.278 0.511 0.964 0.991 2.967
K=100 0.217 0.301 0.996 0.985 3.802 0.278 0.512 0.964 0.991 2.803

9. Large-scale Reconstruction

Chunk processing. The OffsetOPT approach updates per-
point offsets using gradients computed from the entire input
point cloud. In large-scale reconstructions, where memory
limitations prevent processing all data at once, we divide the
input into manageable chunks. Gradients from each chunk

Algorithm 2 Offset Gradient Accumulation in Pytorch.
Input: Number of points per-chunk I .
Output: Raw gradients of offsets.

1: Compute the number of chunks C = d
N
I e.

2: optimizer.zero grad().
3: for iteration c < C do

4: Get chunk points indexed from I⇥c to I⇥(c+1).
5: Forward pass their KNN inputs to get chunk logits.
6: chunk loss = BCE(chunk logits).
7: Accumulate gradients with chunk loss.backward().
8: end for

9: return offsets.grad.

are accumulated, and offsets are updated after such accumu-
lation. This chunking strategy is flexible, allowing random
splits based on point number and adapting to GPU memory
capacity, without the need for careful sub-volume division.
Algorithm 2 shows our pseudocode for such processing in
PyTorch. It is worth noting that, for convenience, we nor-
malize every input point cloud into a unit sphere in all re-
constructions, regardless of the original data scale.
Angle between adjacent triangles. We
compute the angle between two trian-
gles sharing an edge in §3.1 as follows.
Let the two triangles be (p,qi,qj) and
(p,qi,ql), i 6= j 6= l. We compute the
angle A between them as

Nj = (qi � p)⇥(qj � p), (9)
Nl = (qi � p)⇥(ql � p), (10)

A = arccos

✓⌧
Nj

kNjk
,

Nl

kNlk

�◆
. (11)

For planar surfaces, the angle between any two adjacent tri-
angles sharing an edge will be 180�.

10. More Visualizations

Figure 8 compares the reconstructed scene surfaces of
SPSR, NKSR, and the proposed OffsetOPT, with triangu-
lation details. Consistently, we observe that SPSR produces
surfaces with undesired over-smoothing, while NKSR re-
quires ground-truth normals to perform comparably to our
method. Figure 7 shows our reconstructed shape surfaces
with wireframes for ABC, FAUST, MGN, and Thingi10k,
demonstrating the satisfactory triangulation capability of
OffsetOPT. Figure 8 provides further comparison of these
methods on large-scale scene reconstruction.

Table 7. Reconstruction accuracy of different offset initializations.

Dataset Initialization
Surface Quality

overall sharp
CD1(⇥102)# CD2(⇥105)# F1" NC" NR# ECD1(⇥102)# EF1"

FAUST Proposed 0.217 0.301 0.996 0.985 4.038 0.561 0.896

zero 0.217 0.301 0.996 0.985 3.835 0.584 0.889

Thingi10k Proposed 0.332 0.699 0.927 0.984 5.523 4.252 0.478

zero 0.332 0.701 0.926 0.983 5.534 4.484 0.476

(b) SPSR ()

(c) NKSR

(d) NKSR ()

(e) OffsetOPT
 (Proposed)

(a) Ground-Truth

Text

ScanNet Matterport3D

Table 8. Reconstructed surfaces of SPSR, NKSR, and OffsetOPT, with triangulation details for a scene from ScanNet and a scene from
Matterport3D. Our method recovers surfaces with sharp features, while NKSR requires ground-truth normals to achieve comparable quality.

M
G
N

Th
in
gi
10
k

FA
U
ST

AB
C

Figure 7. Examples of reconstructed shape surfaces (with wireframes) from ABC, FAUST, MGN, and Thingi10k using the proposed
OffsetOPT. For the ABC dataset, results are obtained with a single forward pass of the trained network, without offset optimization, as
mentioned in the main paper. OffsetOPT demonstrates surface reconstruction with satisfactory triangulations for all these shape datasets.

(a) Ground-Truth/
 Point Cloud

(b) SPSR ()

(c) NKSR

(d) NKSR ()

(e) OffsetOPT
 (Proposed)

ScanNet Matterport3D CARLA

Figure 8. More comparison of different methods on reconstructing the large-scale scenes from ScanNet, Matterport3D, and CARLA.

	Introduction
	Related Work
	Implicit Neural Representations
	Neural Computational Reconstruction

	Explicit Surface Reconstruction
	Triangle Prediction Network
	Point Offset Optimization
	Reconstruction Application

	Experiments
	Shape Reconstruction
	Scene Reconstruction
	Ablation Study

	Limitation
	Conclusion
	Acknowledgments
	Additional ablation study
	Large-scale Reconstruction
	More Visualizations

