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6. Attention Distance Analysis
In this paper, we measure the average distance spanned by
attention weights at different layers. This attention distance
is analogous to receptive field size in CNNs [9]. Below, we
outline the process for calculating the normalized mean at-
tention distance. For simplicity, we omit the block index
i. First, we compute the distance matrix based on P. This
involves calculating the distances of each token relative to
all other tokens, resulting in a distance matrix D ∈ Rp×p,
where p denotes the length of the patch token. Follow-
ing the principles of self-attention [9, 55], we first com-
pute the query embedding Q and key embedding K of the
patch tokens P. Next, we obtain the attention weights, de-
noted as A using the formula A = QK⊤. We represent
the attention weights for each head as Aj . Subsequently,
we derive the weighted distance matrix Wj by calculating
Wj = D⊙Aj . Finally, for the mean attention distance of
jth head, we can use the following formula:

dj =
1

p

p∑
m=1

p∑
n=1

(Wj)m,n (15)

To compute the normalized mean attention distance, we ap-
ply min-max normalization to d = [dj ]

N
j=1, where N de-

notes the number of heads in the attention.

7. Mutual Information Analysis
Normalized Mutual Information is used to measure the at-
tention collapse [47]. Let pQ(q) and pK(k) be the spatial
distribution of query embeddings Q and key embeddings
K and assume that these query tokens are uniformly dis-
tributed since a single query token is given for each spatial
coordinate. That is pQ(q) = 1

N . Our goal is to measure the
mutual information of the pQ(q) and pK(k).

I(q; k) =
∑

pQK(q, k) log
pQK(q, k)

pQ(q)pK(k)
, (16)

where pQK(q, k) = π(k|q)pQ(q) represents the joint dis-
tribution of pQ(q) and pK(k) and π(k|q) denotes the con-
ditional distribution, which is the attention weights after
softmax normalization. Since pQ(q) is constant, pK(k) =
pQK(q, k) = π(k|q)pQ(q). Then, we get normalized mu-
tual information Inorm by

Inorm =
I(q; k)√
H(q)H(k)

, (17)

where H(q) and H(k) are the entropy of pQ(q) and pK(k),
respectively.

8. Fourier Analysis
Following [46, 47], let P be patch token sequence. We be-
gin by applying the fast Fourier transform (FFT) to P, fol-
lowed by a conversion to obtain the log amplitude:

δ = log |FFT(P)| (18)

Subsequently, we extract the half-diagonal components, de-
noted as δ′. The relative log amplitudes are then computed
as follows:

∆ = δ′ − δ′max, (19)

where δ′max represents the maximum amplitude, identified
as the first element of δ′.

9. Decoder
The application of PEFT to complex downstream tasks ne-
cessitates the incorporation of a decoder that introduces
non-linearity, in contrast to a simple linear layer in [44].
In this work, we aim to demonstrate the capacity of PEFT
methods to effectively transfer knowledge and the inductive
bias introduced by our approach. To mitigate the effects
of inductive bias associated with intricately designed de-
coders, such as those based on convolutional architectures
like UperNet [60], we implement a MLP-based decoder.
The structure of our decoder can be represented as follows:

Decoder (·) = MLP (Up (MLP (·))) , (20)

where Up denotes an upsampling operation using bilinear
interpolation.

10. Loss Functions
The total loss function in our approach is a composite of
three components: the segmentation loss Lseg , the distilla-
tion loss Lcos, and a regularization term Lrate, which con-
trols the mask rate k. The overall loss is defined as:

L = Lseg + λ1Lrate + λ2Lcos (21)

where λ1 and λ2 are hyperparameters that balance the con-
tributions of the Lrate and Lcos.

The segmentation loss Lseg combines binary cross-
entropy (BCE) and DICE to regularize the generation of
segmentation masks.

Lseg = λbceLbce + λdiceLdice, (22)



where λbce, and λdice are hyperparameters that balance the
contributions of the BCE and DICE loss. The BCE loss
Lbce and DICE loss Ldice are defined as:

Lbce = − 1

H ×W

H∑
m=1

W∑
n=1

((
Y log Ŷ

)
m,n

+
(
(1−Y) log

(
1− Ŷ

))
m,n

)
,

(23)

Ldice = 1−
ϵ+ 2

∑H
m=1

∑W
n=1

(
Y ⊙ Ŷ

)
m,n

ϵ+
∑H

m=1

∑W
n=1

(
Y + Ŷ

)
m,n

. (24)

where Y and Ŷ ∈ RH×W represent the ground truth and
predicted segmentation maps, respectively, with values in
the range [0, 1]. The term ϵ is a small constant added to
prevent division by zero.

We directly adopt the Ada loss from [65] to control the
mask rate.

Lrate =

(
1

N × h× w

N∑
i=1

h∑
m=1

w∑
n=1

(
Mi

P

)
m,n

− k

)2

(25)
where Mi

P ∈ RH′×W ′
denotes the mask at ith transformer

block for patch tokens, N represent the total number of
transformer blocks, and k is the target mask rate.

For distillation, we use cosine similarity to align the
representations of the fine-tuned and pre-trained models.
The logits from both models are processed through an
MLP-based distillation head, yielding ẊN and ẌN , where
ẊN , ẌN ∈ R(l+p)×d. The distillation loss is defined as:

Lcos = 1−
l+p∑
i=1

ẊN
i · ẌN

i

∥ẊN
i ∥ · ∥ẌN

i ∥
(26)

11. Implementation Details
Baselines. We compare our method with several ap-
proaches, including linear probing, fine-tuning of the de-
coder only, and VPT [26], which inserts learnable tokens
into the hidden states of each transformer block. Addition-
ally, we consider AdaptFormer [4], which adds trainable
low-rank MLP layers in parallel to the FFN layer within
a transformer block, and LoRA [23], which incorporates
trainable low-rank linear layers alongside the frozen linear
weights. Finally, we include EVP [35], which integrates
high-frequency priors with parallel adapters in the trans-
former blocks.

Table 4 presents the implementation details for training
binary segmentation tasks.
Salient object segmentation. We utilize four widely recog-
nized datasets for salient object segmentation: DUTS [57],

ECSSD [62], SOD [43], and HKU-IS [31]. The DUTS
dataset comprises 10,553 training images and 5,019 testing
images. The ECSSD dataset includes 1,000 testing images,
while the SOD dataset consists of 300 testing images. Addi-
tionally, the HKU-IS dataset contains 4,447 testing images.
All methods are trained on the training set of DUTS [57]
and evaluated on the testing sets of DUTS, ECSSD, SOD,
and HKU-IS.
Defocus blur detection. Following the methodology
presented in [50], we conduct training on the CUHK
dataset [50], which consists of a total of 704 samples ex-
hibiting partial defocus. The network is trained using 604
images from the CUHK dataset, with testing performed on
the remaining images.
Camouflaged object segmentation. To assess our meth-
ods, we select four commonly utilized datasets for cam-
ouflaged object segmentation. The COD10K dataset [14]
comprises 3,040 training samples and 2,026 testing sam-
ples. The CAMO dataset [28] provides 1,000 images
for training and 250 for testing. The NC4K dataset [41]
contains 4,121 testing samples, while the CHAMELEON
dataset [52] includes 76 testing images. In alignment with
[14], we train our methods on the training sets of COD10K
and CAMO, and we evaluate their performance on the test-
ing sets of COD10K, CAMO, NC4K, and CHAMELEON.
Polyp segmentation. For polyp segmentation, we em-
ploy three datasets: Kvasir [25], ETIS [51], and CVC-
ColonDB [54]. The Kvasir dataset includes 1,100 training
images and 196 testing images. The ETIS dataset contains
196 images, while CVC-ColonDB comprises 612 images.
Our training is conducted on the training set of Kvasir, with
evaluation performed using the testing sets of ETIS, CVC-
ColonDB, and Kvasir.
Skin lesion segmentation. For skin lesion segmentation,
we focus on the ISIC 2017 dataset [6], which provides 2,000
training images and 600 testing images.
Semantic segmentation. We utilize two foundational
datasets for semantic segmentation: ADE20K [66] and
Cityscapes [7]. Following [44], we conduct training and
testing on ADE20K and Cityscapes, respectively. As pre-
sented in Table 5, we train for a total of 8 epochs on
ADE20K and 48 epochs on Cityscapes, thereby ensuring
that the number of iterations remains approximately consis-
tent across both datasets.

12. More Experiment Results

12.1. Ablation Study
TR placement. Attention mechanisms incur notable com-
putational overhead for long sequences. Our ablation study
in Tab. 6 evaluates the effects of TR placement, demonstrat-
ing that pre-attention TR application significantly degrades
pixel-level task performance. For instance, Fw

β scores on



Table 4. Experimental settings for binary segmentation datasets. We train all methods using the same hyperparameters.

Configuration DUTS CUHK COD10K+CAMO Kvasir ISIC 2017

Optimizer AdamW [40]
Base learning rate 1.5e-4
Weight decay 1e-4
Batch size 10
Learning rate schedule Cosine decay [39]
Warmup epochs 4 10 10 10 5
Training epochs 16 40 50 40 20

Table 5. Experimental settings for semantic segmentation datasets.
We train all methods using the same hyperparameters.

Configuration ADE20K Cityscapes

Optimizer AdamW [40]
Base learning rate 1.5e-4
Weight decay 1e-4
Batch size 4
Learning rate schedule Cosine decay [39]
Warmup epochs 1 6
Training epochs 8 48

Table 6. Ablation study on TR placement and different backbones.
The rows highlighted in gray represent our method (default set-
ting). Bold values denote the optimal performance under TR.

Methods DUTS Kvasir

Fw
β ↑ Sα ↑ Eϕ ↑ Fw

β ↑ Sα ↑ Eϕ ↑

TR Placement
No TR .906 .937 .946 .935 .957 .967
Attention .878 .926 .937 .865 .921 .933
FFN .895 .933 .944 .938 .960 .975

Backbones

iBOT-Base [67] .826 .893 .905 .925 .957 .968
iBOT-Large [67] .847 .904 .917 .941 .964 .973
EVA02-Base [16] .883 .923 .934 .953 .967 .979
EVA02-Large [16] .901 .934 .943 .965 .974 .984
DINOv2-Base [44] .895 .933 .944 .938 .960 .975
DINOv2-Large [44] .908 .940 .949 .958 .969 .980

DUTS decline to 0.878 (vs. 0.895 when TR is applied to
FFN), with analogous performance reductions observed on
the Kvasir dataset. This aligns with [65]’s findings in im-
age classification. Future work should explore effective TR
application in attention for pixel-level tasks without com-
promising performance.
Different backbones. To assess the generalization and
scalability of our method, we conduct experiments on back-
bones with diverse attention properties (e.g. DINOv2 [44],
EVA02 [16], iBOT [67]). As shown in Tab. 6, our method
achieves consistent performance across these backbones.
Furthermore, when scaling to larger variants, performance
improves with model size, empirically demonstrating scal-
ability.

12.2. Segmentation Results

Comparison with recent TR methods. To evaluate our
method against existing TR approaches for pixel-level
tasks, we conduct comparisons in Tab. 7. We evaluate re-
cent TR methods specialized for distinct pixel-level tasks,
including DTMFormer [58] in medical image segmentation,
DoViT [37] in semantic segmentation, and SViT [36] in
instance or semantic segmentation. Experiments are per-
formed on established benchmarks, including Kvasir and
ISIC 2017 for medical image segmentation, and ADE20K
and Cityscapes for semantic segmentation, ensuring consis-
tency with prior experimental setups.
Semantic Segmentation. In Table 8, our methods
demonstrate superior performance relative to DyT on both
ADE20K and Cityscapes. Notably, our approach outper-
forms AdaptFormer, a method that does not incorporate
TR. This advantage may stem from our method’s ability to
maintain the diversity of attention while the high-frequency
components aggregated by the token compensator posi-
tively influence multi-class segmentation. This effect is
particularly significant on ADE20K, which includes 151
classes, in contrast to Cityscapes, which has only 34 classes.
Additionally, our methods achieve performance compara-
ble to that of PEFT methods without TR on the Cityscapes
dataset.
Salient object segmentation. Table 9 presents the results
of our evaluation on salient object segmentation (SOS). Our
method demonstrates superior performance compared to
DyT across all SOS datasets, while achieving performance
levels comparable to methods that do not utilize TR. This
suggests that our approach effectively enhances fundamen-
tal segmentation capabilities.
Camouflaged object segmentation. In Table 10, we
demonstrate the performance of our method on four camou-
flaged object segmentation (COS) datasets. Our approach
achieves superior performance relative to DyT across all
datasets, showcasing its effectiveness in handling more
complex scenes. Furthermore, it attains performance lev-
els comparable to those of methods that do not incorporate
TR. This finding suggests that our method significantly en-
hances segmentation capabilities in challenging scenarios



Table 7. Comparison with full fine-tuning (full FT) TR methods.

Methods
Total

Params.
(M)

Trainable
Params. (M) /

Ratio (%)

Semantic Segmentation Medical

ADE20K [66] Cityscapes [7] Kvasir [25] ISIC 2017 [6]

mIOU (%) mIOU (%) Fw
β ↑ Sα ↑ Eϕ ↑ Fw

β ↑ Sα ↑ Eϕ ↑

Full FT w/ TR
DTMFormer [58] 33.6 33.6 / 100.0% - - .870 .926 .941 .776 .830 .821
DoViT [37] 88.5 88.5 / 100.0% 46.5 76.4 - - - - - -
SViT [36] 48.0 48.0 / 100.0% 44.8 76.2 - - - - - -

PEFT w/ TR DyT [65] 86.7 1.2 / 1.4% 49.5 50.6 .897 .944 .963 .843 .868 .884
Ours 87.9 2.6 / 2.9% 52.6 67.3 .938 .960 .975 .871 .862 .881

Table 8. Quantitative and efficiency comparison of semantic
segmentation using parameter-efficient fine-tuning (PEFT), both
without and with token reduction (TR).

Methods FLOPs (G) mIOU
ADE20K [66] Cityscapes [7] Avg.

w/o TR

Linear 117.08 45.9 60.9 54.1
VPT [26] 122.52 49.2 61.8 55.5
LoRA [23] 118.90 50.7 61.6 56.2
AdaptFormer [4] 118.70 51.5 68.8 60.2

w/ TR DyT [65] 97.87 49.5 50.6 50.0
Ours 107.55 52.6 67.3 60.0

associated with camouflaged objects.
Polyp segmentation. In Table 11, we present the per-
formance of our method on several medical segmentation
datasets. Our approach demonstrates superior performance
compared to DyT across all datasets, highlighting its effec-
tiveness in addressing the complexities inherent in medi-
cal images. Notably, our method outperforms all PEFT
methods without TR including AdaptFormer on Kvasir and
CVC-ColonDB. This finding indicates the robustness and
adaptability of our methods in medical segmentation tasks.

12.3. VTAB-1K Results
To evaluate the performance of our method on classifica-
tion tasks and its adaptation capabilities when training data
is limited, we employ the VTAB-1K [64] benchmark. Fol-
lowing the approach outlined in [65], we utilize a Vision
Transformer (ViT) pretrained on ImageNet-21k, maintain-
ing the same training scheme. In contrast to our segmen-
tation configuration, we adopt a significantly reduced rank
setting for this classification task, specifically configuring
the adapter rank at 6 and the token compensator rank at 2.

Results are summarized in Tab. 12. For TR-PEFT meth-
ods on natural images, our approach achieves one first-
rank and one second-rank result, outperforming DyT, which
ranks second in both instances. In specialized domains,
AdaptFormer demonstrates superior performance across
most datasets, while our method and DyT achieve compa-
rable performance. Conversely, in structured domains, our
method exhibits limitations due to limited dataset scale and
significant domain gaps between structured images and pre-
training data, necessitating larger training datasets than DyT

to achieve comparable performance.

13. More Visualization

13.1. Masked Tokens
We provide additional visualizations to illustrate the effects
of our token reduction methods across various scenes, in-
cluding simple, complex, and medical contexts. Fig. 6 dis-
plays the effects of our token reduction in a simple scene,
exemplified by the DUTS dataset. Fig. 7 demonstrates the
effects in a complex scene. Fig. 8 and Fig. 9 showcase the
impact of our token reduction methods in polyp segmenta-
tion and skin lesion segmentation, respectively.

Our method progressively masks tokens along object
boundaries as network layers increase. In Fig. 6, we ob-
served that our approach tends to mask inner object regions
while preserving boundary integrity. In other words, our
method retains only the boundary information of objects,
thereby achieving a relatively higher mask ratio within a
single image. In Fig. 7, Fig. 8, and Fig. 9, the masking
strategy effectively identifies concealed objects that require
fine-grained processing, demonstrating the effectiveness of
our approach. This strategy thereby enhances the model’s
confidence in target identification across various segmenta-
tion tasks.

13.2. Segmentation Maps
To further demonstrate the effectiveness of our method,
we present additional visualizations of segmentation maps
across diverse scenarios, including simple, complex, and
medical contexts. Specifically, Fig. 10 illustrates segmen-
tation results in a simple scene using the DUTS dataset as
a representative example. Fig. 11 highlights segmentation
performance in complex scenes, while Fig. 12 showcases
results in medical applications, specifically polyp segmen-
tation and skin lesion segmentation.

As depicted in Fig. 10, our method achieves superior per-
formance in simple scenes. The segmented regions gener-
ated by our approach exhibit smoother boundaries and finer
details, such as continuous thin lines, compared to com-
peting methods. Additionally, the segmentation maps pro-
duced by our method contain minimal noise, which can be



Table 9. Quantitative comparison of salient object segmentation.

Methods DUTS [57] ECSSD [62] SOD [43] HKU-IS [31]

Fw
β ↑ Sα ↑ Eϕ ↑ Fw

β ↑ Sα ↑ Eϕ ↑ Fw
β ↑ Sα ↑ Eϕ ↑ Fw

β ↑ Sα ↑ Eϕ ↑

w/o TR

Linear .658 .841 .832 .777 .892 .875 .715 .810 .785 .741 .881 .879
Decoder Only .756 .879 .889 .849 .916 .921 .787 .834 .837 .817 .906 .924
VPT [26] .896 .931 .938 .934 .951 .958 .830 .826 .824 .914 .940 .954
AdaptFormer [4] .906 .937 .946 .943 .955 .962 .865 .850 .859 .926 .946 .960
LoRA [23] .897 .932 .942 .927 .949 .954 .854 .851 .855 .911 .940 .954
EVP [35] .887 .929 .935 .930 .949 .955 .846 .836 .832 .912 .940 .953

w/ TR
DyT [65] .859 .921 .930 .902 .938 .944 .837 .849 .855 .886 .931 .945
Ours .895 .933 .944 .924 .948 .958 .860 .851 .863 .908 .943 .960
Ours† .901 .935 .947 .932 .948 .957 .856 .850 .857 .917 .942 .958

Table 10. Quantitative comparison of camouflaged object segmentation.

Methods COD10K [14] CAMO [28] NC4K [41] CHAMELEON [52]

Fw
β ↑ Sα ↑ Eϕ ↑ Fw

β ↑ Sα ↑ Eϕ ↑ Fw
β ↑ Sα ↑ Eϕ ↑ Fw

β ↑ Sα ↑ Eϕ ↑

w/o TR

Linear .657 .860 .866 .707 .853 .852 .750 .889 .891 .746 .892 .888
Decoder Only .769 .888 .918 .796 .886 .904 .831 .907 .925 .825 .908 .924
VPT [26] .816 .903 .936 .850 .908 .933 .869 .918 .941 .860 .926 .951
AdaptFormer [4] .826 .906 .941 .866 .911 .939 .879 .922 .946 .873 .926 .952
LoRA [23] .814 .897 .935 .852 .905 .934 .867 .913 .939 .855 .920 .944
EVP [35] .803 .900 .933 .832 .901 .921 .859 .916 .937 .847 .917 .938

w/ TR
DyT [65] .796 .894 .934 .839 .901 .932 .851 .910 .937 .834 .909 .943
Ours .810 .899 .935 .842 .902 .932 .853 .914 .939 .834 .915 .936
Ours† .808 .899 .936 .848 .905 .933 .859 .915 .939 .860 .924 .952

attributed to the integration of a learnable mask mechanism
that effectively suppresses irrelevant regions.

In complex scenes (Fig. 11), our method maintains its
advantage, particularly in preserving the continuity of thin
structures—a challenge where alternative approaches of-
ten produce fragmented results. For medical applications
(Fig. 12), our method demonstrates higher confidence lev-
els in delineating abnormal regions. Notably, in cases in-
volving ambiguous abnormal areas (e.g., the second row of
Fig. 12), our approach maintains clearer distinctions com-
pared to other methods, which exhibit uncertainty in such
regions.

14. Limitations and Future Work

While the proposed method demonstrates improved effi-
ciency in FFN computations through TR, two primary limi-
tations remain. First, it does not directly address the compu-
tational overhead of attention mechanisms in long-sequence
tasks. Our experiments in Tab. 6 show that applying to-
ken reduction before attention layers degrades performance
in pixel-level tasks, as evidenced by Fw

β scores of 0.878

compared to 0.895 when token reduction is applied to FFN
on DUTS. This aligns with prior work [65], which iden-
tified similar challenges in image classification, indicating
that token reduction disrupts spatial dependencies essential
for attention-based feature refinement. Second, the method
demonstrates limited adaptability in structured image do-
mains such as medical or satellite imagery, where signifi-
cant domain gaps exist between pretraining data and target
tasks. Achieving performance comparable to DyT in these
domains requires substantially larger training datasets, un-
derscoring a dependency on data scale that may limit prac-
ticality in resource-constrained settings.

Future research should focus on optimizing the integra-
tion of token reduction with attention mechanisms to min-
imize computational cost in pixel-level tasks. This could
involve developing TR techniques that preserve attention
dynamics without significantly compromising performance.
Additionally, exploring the method’s adaptability to distant
image domains is essential. Further evaluation should ex-
tend to multimodal understanding and generation, to as-
sess the broader applicability and robustness of TR strate-
gies. Addressing these challenges could advance the de-



Table 11. Quantitative comparison of polyp segmentation.

Methods Kvasir [25] ETIS [62] CVC-ColonDB [54]

Fw
β ↑ Sα ↑ Eϕ ↑ Fw

β ↑ Sα ↑ Eϕ ↑ Fw
β ↑ Sα ↑ Eϕ ↑

w/o TR

Linear .482 .782 .747 .327 .726 .680 .535 .816 .787
Decoder Only .723 .870 .872 .531 .774 .725 .737 .863 .858
VPT [26] .891 .939 .951 .587 .814 .778 .817 .900 .906
AdaptFormer [4] .935 .957 .967 .719 .873 .877 .864 .912 .930
LoRA [23] .936 .956 .966 .641 .839 .839 .850 .909 .929
EVP [35] .857 .934 .943 .618 .846 .831 .806 .898 .907

w/ TR
DyT [65] .897 .944 .963 .665 .859 .861 .827 .900 .919
Ours .938 .960 .975 .681 .864 .871 .862 .917 .936
Ours† .940 .959 .974 .691 .868 .862 .865 .912 .929

Table 12. Quantitative comparison of polyp segmentation.
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Parameter-efficient fine-tuning
AdaptFormer 70.8 91.2 70.5 98.8 90.9 86.6 54.3 83.0 95.8 84.4 76.3 81.9 64.3 49.3 80.3 76.3 45.7 31.7 41.1 72.3

LoRA 67.1 91.4 69.4 98.8 90.4 85.3 54.0 84.9 95.3 84.4 73.6 82.9 69.2 49.8 78.5 75.7 47.1 31.0 44.0 72.3
VPT 78.8 90.8 65.8 98.0 88.3 78.1 49.6 81.8 96.1 83.4 68.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 69.4

Parameter-efficient fine-tuning with token reduction
DyT 70.4 94.2 68.6 98.0 90.3 86.5 51.5 87.1 95.3 84.2 72.2 79.2 60.8 51.0 79.9 79.7 55.1 34.0 40.9 72.5
Ours 68.3 94.4 68.8 98.6 89.9 84.7 52.2 87.1 95.7 83.8 72.6 81.1 60.7 51.1 79.9 83.0 50.9 30.0 43.3 72.4

velopment of efficient and accurate vision architectures for
diverse real-world applications.
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Figure 6. Visualization of the effects of our token reduction on DUTS dataset.
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Figure 7. Visualization of the effects of our token reduction on COD10K and CAMO dataset.
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Figure 8. Visualization of the effects of our token reduction on Kvasir dataset.
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Figure 9. Visualization of the effects of our token reduction on ISIC 2017 dataset.
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Figure 10. Visualization of the effects of our token reduction on ISIC 2017 dataset.
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Figure 11. Visualization of the effects of our token reduction on ISIC 2017 dataset.
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Figure 12. Visualization of the effects of our token reduction on ISIC 2017 dataset.
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Halvorsen, Thomas De Lange, Dag Johansen, and Håvard D
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