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Abstract

Parameter-efficient fine-tuning (PEFT) adapts pre-trained
models to new tasks by updating only a small subset of
parameters, achieving efficiency but still facing significant
inference costs driven by input token length. This chal-
lenge is even more pronounced in pixel-level tasks, which
require longer input sequences compared to image-level
tasks. Although token reduction (TR) techniques can help
reduce computational demands, they often lead to homoge-
neous attention patterns that compromise performance in
pixel-level scenarios. This study underscores the impor-
tance of maintaining attention diversity for these tasks and
proposes to enhance attention diversity while ensuring the
completeness of token sequences. Our approach effectively
reduces the number of tokens processed within transformer
blocks, improving computational efficiency without sacri-
ficing performance on several pixel-level tasks. We also
demonstrate the superior generalization capability of our
proposed method compared to challenging baseline mod-
els. The source code will be made available at https :
//github.com/AVC2-UESTC/DAR-TR-PEFT.

1. Introduction

Recent advancements in visual pre-trained foundation mod-
els [2, 15, 16, 44, 67] have gained widespread popularity
due to their exceptional generalization capabilities across
a broad spectrum of tasks. Building on this success,
parameter-efficient fine-tuning (PEFT) techniques [22, 23,
26] have further enhanced the practicality of these mod-
els by enabling efficient adaptation to various downstream
tasks and data domains, requiring updates to only a minimal
number of parameters. Despite the efficiency that PEFT
methods bring to training, they still encounter significant
computational challenges during inference. For image-level
tasks like classification, these challenges can be alleviated
using token reduction (TR) techniques [1, 3, 30, 32, 34, 49,
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65]. In image classification, a class token is used, enabling
the reduction of patch tokens without negatively impacting
prediction accuracy, as fewer and more abstract tokens are
sufficient to capture the overall content of the image.

At first glance, pixel-wise tasks such as segmentation
[27, 38, 60] appear well-suited to benefit from token re-
duction (TR) due to their requirement for longer token
sequences to capture fine-grained, high-resolution details.
However, this very need introduces a significant trade-off
between efficiency and accuracy: reducing the number of
tokens can compromise the model’s ability to produce pre-
cise and detailed predictions. Although prior studies on dy-
namic transformers [32, 33, 49, 63] have shown that TR ef-
fectively reduces inference costs for image-level tasks, ex-
tending these techniques to pixel-level tasks remains chal-
lenging. This is partly because pixel-wise tasks are highly
sensitive to spatial resolution and coherence. Specifically,
reduced token sequences often lack a spatially coherent rep-
resentation, which is problematic for pixel decoders that
require tokens with a complete spatial structure to func-
tion effectively. Additionally, segmentation tasks demand
maintaining semantic and boundary details across all to-
kens, and any loss of fine-grained information can degrade
performance. Therefore, balancing token reduction while
preserving both spatial structure and high-resolution details
remains an unresolved challenge.

Moreover, the diversity of features captured by the at-
tention mechanism is crucial for the success of pixel-level
tasks. Namuk er al. [47] and Xie et al. [61] emphasize that
a diverse set of attention heads allows the model to focus
on various aspects of the input, facilitating the learning of
rich and comprehensive representations. This diversity is
essential for accurately capturing fine-grained details and
complex patterns, which are critical for tasks such as seg-
mentation and depth estimation. Without sufficient diver-
sity, models may struggle to differentiate subtle features, ul-
timately leading to a decline in performance for pixel-level
applications. We further examine existing TR methods from
the perspective of diversity and discuss our findings below.

In Fig. 1 (a), we present the normalized mean atten-
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Figure 1. Comparison of the normalized mean attention distance (MAD) for (a) DINOv2 without token reduction (TR), (b) DINOv2 with
TR, and (c) DINOv2 using our proposed method. Each point within a column corresponds to a specific attention head, with the vertical
axis representing the normalized MAD. Higher values indicate a larger receptive field, while greater separation between points reflects
increased diversity among attention heads. In (d), a lower value of normalized mutual information (MI) suggests a weaker dependence of
the attention map on query tokens, implying that the attention distribution collapses into homogeneity, thereby reducing diversity. Notably,
the normalized MI of DINOv2 with TR is significantly lower than that of DINOv2 without TR, especially after the 5'" transformer block.
Furthermore, the curves for different token activation rates of 0.5, 0.7, and 0.9 exhibit consistent patterns. In (e) and (f), a higher value of
A Log amplitude indicates that the representations leverage high-frequency components. DINOv2 with TR begins to show a reduction in
high-frequency components after the 5" transformer block, whereas DINOv2 without TR only exhibits this reduction starting from the
10™ block. Details of the procedure are provided in the supplementary materials.

tion distance (MAD) for DINOv2 [44]. The figure illus-
trates that nearly all transformer blocks exhibit diverse at-
tention distributions, as reflected by the varying normal-
ized MAD values across different attention heads in each
column. However, when a fixed token reduction strat-
egy [32, 34] is applied, this diversity significantly dimin-
ishes. As shown in Fig. | (b), the attention heads in the later
transformer blocks tend to have nearly identical normalized
MAD values, indicating a loss of variability.

To further quantify attention diversity, we use normal-
ized mutual information (NMI) [53] in Fig. 1 (d), com-
paring the diversity of attention heads across transformer
blocks. The green curve reveals that the NMI of DINOv2
with TR drops rapidly and remains much lower than that

of the model without TR. This sharp decline indicates that
TR causes the attention mechanisms to collapse into homo-
geneous distributions. While such uniformity may not no-
ticeably harm image classification performance, it can be
detrimental to pixel-level tasks [47]. Such homogenization
of attention patterns reduces the model’s expressive power,
particularly undermining its performance in tasks that re-
quire a nuanced understanding of complex visual details.

Given that fixed TR leads to homogeneous attention pat-
terns, we hypothesize that it may also cause a loss of high-
frequency details. To explore this, we conduct a Fourier
analysis following the methods outlined in [46, 47]. As
shown in Fig. 1 (e), we present the relative log amplitude of
Fourier-transformed representations, computed as the dif-



ference in amplitude between the highest and lowest fre-
quencies. The analysis reveals that DINOv2 without TR
retains more high-frequency components in the later trans-
former blocks compared to DINOv2 with TR. Notably, we
observe that a higher token keep rate within the TR con-
figuration is associated with a significant reduction in high-
frequency components in the final transformer blocks. This
counterintuitive result may be due to the increased unifor-
mity among longer tokens at higher keep rates. Fixed TR
inherently leads to the loss of high-frequency details, which
are crucial for pixel-level tasks. High-frequency compo-
nents capture important information about edges, textures,
and subtle variations within an image. By reducing the
number of tokens, the model risks discarding these features,
resulting in diminished fidelity and performance.

We contend that the loss of high-frequency information
can significantly degrade the performance of pixel-level
tasks, which depend heavily on these components to cap-
ture essential fine-grained details such as edges, boundaries,
and small-scale textures required for accurate predictions.
When high-frequency details are diminished, the model’s
ability to distinguish between different regions or objects is
compromised, leading to blurred or imprecise outputs and
ultimately reducing overall task performance.

Motivated by this phenomenon, in this paper, we seek to
deepen the understanding of how TR affects attention mech-
anisms and visual representations, pinpointing the barriers
and challenges that complicate the use of TR in PEFT for
pixel-level tasks. We propose Diverse Attention Restorer
(DAR) that preserves attention diversity, retains the high-
frequency components of visual representations, and main-
tains the completeness of the token sequence, all while re-
ducing the number of tokens processed within transformer
blocks. By striking an optimal balance between perfor-
mance and inference efficiency for pixel-level tasks, our
method enhances the practical applicability of PEFT tech-
niques in this crucial area. To summarize, we make the fol-
lowing contributions:

* We systematically analyze the limitations of current to-
ken reduction (TR) techniques and identify that they of-
ten lead to a loss of attention diversity and high-frequency
information representation, which we believe are critical
for pixel-level tasks.

* Based on these findings, we propose a decoupled design
of the Token Compensator and PEFT Module. We further
develop a learnable mask mechanism to address the per-
turbation issue caused by the FFN bias, enhancing the ef-
fectiveness of token reduction without compromising per-
formance.

e Our method demonstrates outstanding performance
across several pixel-level tasks with minimal FLOPs. Ad-
ditionally, we showcase the superior generalization capa-
bility of our approach in zero-shot settings compared to

strong baseline models, highlighting its practical efficacy
and efficiency.

2. Related Work
2.1. Pixel-Level Tasks

Pixel-level tasks involve classifying or detecting each pixel
within an image, as seen in applications like segmenta-
tion [27]. In real-world scenarios, many critical applications
rely on precise pixel-level analysis for accurate detection
and interpretation. For example, in the medical domain, ac-
curately segmenting pathological regions is essential. Tasks
such as polyp segmentation [25] and skin lesion segmen-
tation [6] are crucial for providing clinicians with reliable
delineations to aid in effective diagnosis.

Additionally, salient object segmentation and camou-
flaged object segmentation [13, 14] play a vital role in com-
puter vision by enhancing visual perception, enabling the
accurate separation of relevant objects from complex back-
grounds. In the field of remote sensing [17, 56], high-
precision detection is required for the effective analysis and
interpretation of satellite imagery, demonstrating the broad
and impactful applications of pixel-level tasks.

2.2. Token Reduction

Token reduction has become a widely adopted strategy in
Vision Transformers (ViTs) to enhance inference efficiency.
Several methods have incorporated token reduction into the
full training process of ViTs, such as EViT [32], Dynam-
icViT [49], and DiffRate [3]. In addition, recent stud-
ies have leveraged token reduction to enable parameter-
efficient fine-tuning of ViT models. Prominent examples
include CoDA [30], Dynamic-Tuning [65], and Sparse-
Tuning [34]. Moreover, ToMe [1] introduces a training-free
approach designed to improve the inference efficiency of
ViTs.

2.3. Parameter-Efficient Fine-Tuning (PEFT)

PEFT techniques aim to minimize computational overhead
by fine-tuning a small subset of model parameters while
keeping most of the parameters unchanged. One notable
method is LoRA [23], initially popularized for language
tasks and has recently gained attention in vision applica-
tions. VPT [26] is a simple yet effective approach for fine-
tuning visual models by adding learnable prompt tokens to
the input sequence. Another approach, the adapter method,
introduces small, learnable modules between transformer
layers [18]. A serial adapter strategy has been used ef-
fectively for language tasks, as demonstrated by the NLP
Adapter [22, 48], while AdaptFormer [4] employs a paral-
lel strategy optimized for vision tasks. More recently, EVP
[35, 59] has emerged, combining the parameter efficiency
of VPT with the robustness of adapters and incorporating



high-frequency priors to further enhance performance.

3. Methodology
3.1. Facilitating TR-PEFT for Pixel-level Tasks

Let X be the input tokens to the i transformer block with
TR. This process can be formulated as follows:

X* =X+ M (TR (X)), (1)

where M represents the entire transformer block or any of
its internal modules, such as the self-attention mechanism
or feed-forward networks (FFN). While the token reduction
process effectively reduces the number of tokens, the resid-
ual connection [10, 19] is designed to mitigate the loss of
information and structural integrity. However, the inherent
limitations of the residual connection can also lead to inad-
equate feature aggregation, which is critical for pixel-level
tasks. To overcome this limitation, there is a strong need
for an additional token compensator that can preserve spa-
tial structure and further enhance the representation of the
reduced token sequence.

Adapter as a token compensator. In CoDA [30] and Dy-
namic Tuning [65], the authors introduce an adapter [4, 22]
in parallel with the token reduction module. Thus, Eq. (1)
can be rewritten as:

XU =X+ M (TR (X)) + Adapter (X))

We posit that this adapter serves a dual function: it not
only facilitates the learning of new information from the
incoming data but also plays a crucial role in preserving the
spatial structure inherent in the original, unreduced tokens.
Thus, the adapter can be viewed as a composition of these
two essential functions.

Adapter = F o G, (3)

where F represents the function that aims to learn new
knowledge, potentially realized through a PEFT module,
and G denotes the token compensator, which is designed to
retain the spatial integrity of the unreduced tokens while ag-
gregating information that may be advantageous for pixel-
level tasks.

Decoupled design of token compensator and PEFT mod-
ule. Usually, visual tokens are represented as the concate-
nation of class tokens, register tokens [8], and patch tokens.

X' = concat [E, P’] , “4)

where E? € R'*¢ denotes class and register tokens with
length | and embedding dimension d, and P* € RP*? is
patch tokens derived from the images with length p. F re-
ceives the entire token sequence X' to learn new knowl-
edge, while G processes only the patch tokens P? to pre-
serve spatial structure. We believe that separating the design

of the PEFT module and the token compensator provides
greater flexibility and efficiency for model adaptation. This
can be formulated as:

X+ = X'+ M (TR (XY)) + F (X') + G (P), (5)

The rationale behind the decoupled design of the PEFT
module and the token compensator lies in the need to ad-
dress distinct requirements for model adaptation efficiently.
By decoupling these components, the PEFT module can
be optimized specifically for learning new knowledge from
incoming data, focusing on parameter efficiency and min-
imizing computational overhead. Meanwhile, the token
compensator can be independently designed to preserve the
spatial structure and integrity of the original tokens, ensur-
ing that crucial details necessary for tasks like segmenta-
tion or depth estimation are maintained. Additionally, this
architectural separation facilitates the application of the to-
ken compensator across a diverse range of PEFT method-
ologies, thereby promoting generalizability beyond the con-
fines of adapter tuning [4, 22].

3.2. Our Method

Building on the preceding discussion, we propose the im-
plementation of a token compensator that functions inde-
pendently from adapters or other PEFT modules. This de-
sign is specifically intended to preserve the spatial structure
of the tokens. Furthermore, we introduce the idea of using
a learnable mask as the token reduction strategy. This adap-
tive mechanism enables dynamic token selection, allowing
the model to adjust which tokens are activated during pro-
cessing based on the input’s characteristics. Together, the
independent token compensator and the learnable mask are
designed to restore attention diversity and enhance the high-
frequency components within visual representations, ulti-
mately improving performance on pixel-level tasks.
Strategy for reducing tokens. A simple strategy for re-
ducing tokens involves using a learnable mask M’ to in-
dex the complete token sequence X°. However, in a given
batch, each image token sequence X’ can generate a differ-
ent mask M, resulting in varying numbers of active tokens.
This variability leads to different lengths p for X* within a
single batch. While this approach is acceptable during in-
ference, it hinders the use of parallel computation during
training. To address this issue, the authors in [49] directly
sparsify the token sequence X’ by performing a Hadamard
product between X* and a mask M¢ € R(-+P)X4_ The mask
M is obtained by repeating M’ along the last dimension,
leading to the formulation:

X7 — FFN (Xi ® M) . 6)

where ® denotes the Hadamard product. While this
approach demonstrates effectiveness when the model is
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Figure 2. Overall architecture of the proposed method. During training, the PEFT module, token compensator, and token reduction
components are tuned, while FEN and other modules within the transformer block remain fixed. A masking technique is applied after the
FFN to prevent perturbation of the bias weights. During inference, the mask is utilized to reduce the length of the patch tokens P*, thereby

lowering the computational resource requirements.

trained from scratch, our empirical observations indicate
that it encounters significant convergence difficulties within
the context of PEFT, as illustrated in Fig. 3. We hypothe-
size this is due to the perturbation of the FFN bias from
the pre-trained weights. We take the first linear layer of an
MLP FFN for instance.

zz(xi@W)Wer. 7

where W € R¥*7 and b € R"? are the weight and bias,
respectively, and r is FFN ratio. Here, Z denotes the output
of the linear layer. The bias term b is not affected by the
mask M¢. To address this issue, we apply the mask M
again after the FFN to block the perturbation, resulting in
the equation

W:W@FFN(XZ’@W). ®)

This adjustment ensures successful model convergence.
However, applying M‘ before the FFN becomes ineffec-
tive. Since the FFN performs channel-wise transforma-
tions, masking prior to the FFN has negligible impact on
spatial feature interactions. The benefits of masking are
most pronounced when applied after the FFN, as depicted
in Fig. 2 (a). This strategy maintains the spatial structure of
the input while effectively reducing the biases introduced
by the FFN. Thus, we have designed our method to lever-
age this strategic placement of masking as follows:

Xi =M ©FFN (X'). 9)

Mask generation. We directly generate the mask from
the patch token sequence P? by a 3 x 3 convolution layer

Training loss
= DynamicViT = Ours

Loss value

500 1k 1.5k 2k 2.5k 3k
Step

Figure 3. Training Curves of Different TR methods. DynamicViT,
based on Eq. (6), faces convergence difficulties. In contrast, our
approach, which utilizes Eq. (8), converges successfully.

C,, : RIxhxw _y RIXhXW whepe b = @ = /D is the
height and width of the reshaped patch tokens. Then, we
apply a sigmoid function followed by a threshold operation
to generate masks MY, for patch tokens. To ensure differ-
entiability, we add Gumbel noise [21] prior to the sigmoid
function. This process can be formulated as follows:

SZ- — <C7YL(PZ) —+ Gl — G2> 7 (10)

T

] O’ (Sz)m n <T
(MP)mJL = { 1’ (Sl) ’ 2 T (11)

where G1, Go ~ Gumbel(0,1), 7 is the temperature pa-



rameter set to 5.0 by default, and o is the sigmoid function.
The threshold value T is set to 0.5. (MY%) ~and (S*)

denote the element of MY, and S° respectively. Then, We
choose not to apply masking to class and register tokens,
thus setting M%, = 1 € RY!. Finally, we concatenate the
flattened M € RP*! with MY, to obtain the final mask
M-

N

M’ = concat [M;, M5] . (12)
Masking in training and inference. As illustrated in
Fig. 2 (a), we repeat the values in M’ along the embedding
dimension to obtain M! € R(+P)*4_ during training. Dur-
ing inference, we remove the Gumbel noise and apply M®
directly to X' to determine which tokens to mask at FFN,
as shown in Fig. 2.
Token compensator. The goal of the token compensator
is to preserve the spatial structure of the tokens and restore
high-frequency information. To achieve this, we design a
simple and lightweight token compensator by incorporat-
ing local biases and enhancing high-frequency components
using convolution layers [46]. Fig. 2 illustrates the archi-
tecture of our token compensator. The formulation of the
token compensator (TC) is given as:

TC(z) = Conv(y(DWConv(Conv(z)))), (13)

where v is the GELU function, DWConv refers to the x3
depth-wise convolution, and Conv denotes the 1 x 1 convo-
lution layer. To maintain the computational efficiency of the
token compensator, we maintain a low-rank design strategy
for two 1 x 1 convolution layers. This approach minimizes
the number of additional parameters.

Loss function. In our approach, we incorporate a com-
posite loss function that consists of the segmentation loss
Lseq, the distillation loss L., and a regularization term
Late, Which regulates the token activation rate k. The
segmentation is employed to regularize the generation of
segmentation maps, combining binary cross-entropy (BCE)
and DICE. We directly adopt the Ada loss from [65] to con-
trol the token activation rate. For the distillation process,
we employ cosine similarity to align the learned represen-
tations between the fine-tuned and pre-trained models. The
total loss function is thus formulated as:

L= ACseg + )\l‘crate + )\QECOS (14)

where A\; and A, are hyperparameters that balance the con-
tributions of the L,.qse and Leos and Lgeg = ApceLpce +
AdiceLdice- The complete formulaes for each loss function
is provided in Supp.

4. Experiments

4.1. Experimental Setting

Datasets. We conduct experiments across three different
scenes, focusing on real-world tasks. The datasets include

simple scenes, complex scenes, and medical scenes. For
simple scenes, we utilize the DUTS [57] dataset for salient
object segmentation (SOS) and the CUHK [50] dataset for
defocus blur detection. For complex scenes, we employ the
CODIOK [14] and CAMO [28] datasets for camouflaged
object segmentation (COS) [13, 14]. In the medical do-
main, we use the Kvasir [25] and ISIC 2017 [6] datasets for
polyp segmentation and skin lesion segmentation, respec-
tively. For additional results on more datasets, please refer
to the Supp.

Implementation details. Our method was implemented us-
ing the PyTorch and the experiments were conducted on
a RTX4060Ti GPU. In our implementation, the backbone
was a pre-trained DINOv2-B [44] model, while the remain-
ing modules were randomly initialized. We utilized the
AdamW [40] optimizer for all experiments, with an initial
learning rate set at 1.5 x 10~* and a cosine decay scheduler.
During the training phase, we followed the resolution used
in DINOvV2, resizing input images to 518x518 pixels and
applying random horizontal flips. For additional implemen-
tation details, please refer to Supp.

Evaluation metrics. To thoroughly evaluate the model’s
performance, we employed three widely-used metrics for
binary segmentation: weighted F-measure (FZ;”) [42], S-
measure (S, ) [5], and mean E-measure (Ey) [11, 12].
Loss weights. We employed a straightforward approach for
assigning loss weights. Specifically, we set A\p.e = 1.0 and
Adice = 0.5 for mask loss L,,qsk. Additionally, We set
)\1 = 2.0 and )\2 =0.1.

4.2. Quantitative Results

Comparison with PEFT methods. In Tab. 1, all PEFT
methods outperform the linear probing and decoder-only
methods, highlighting the significance of PEFT in enhanc-
ing foundation models for challenging scene understanding
in difficult data domains. Specifically, in the medical do-
main, our methods demonstrate superior performance com-
pared to DyT, as well as methods that do not utilize to-
ken reduction, particularly refering to weighted f-measure
Fg. In simple scenes, our methods consistently outper-
form DyT and achieve comparable performance to PEFT
methods without token reduction, such as AdaptFormer and
VPT, while exceeding the performance of other PEFT meth-
ods without token reduction, including EVP and LoRA. In
the complex domain, our methods continue to show an ad-
vantage over DyT, reinforcing the effectiveness of our ap-
proach across varying levels of scene complexity.
Comparison with pixel-level TR methods. We also in-
clude additional comparison with TR methods based on full
fine-tuning for pixel-level tasks in Sec. 12.2 of Supp.
Analysis of inference efficiency. In Tab. 1, we present
a comparative analysis of the number of parameters and
FLOPs for PEFT methods. Notably, our method demon-



Table 1. Quantitative and efficiency comparison of three different scenes using parameter-efficient fine-tuning (PEFT), both without and
with token reduction (TR). In terms of the backbone, “Total Params.” denotes the total number of parameters. “Trainable Params. (M) /
Ratio (%)” indicates the number of trainable parameters and their proportion relative to the total number. “FLOPs” refers to the floating-
point operations per second. Bold values indicate the best performance for configurations both without TR and with TR, respectively.

Ourst denotes our method with distillation.

‘ Total Trainable . ‘ Simple ‘ Complex ‘ Medical
Methods Params. Params. (M) / FLOPs FPS < < .
‘ o . i A(o7) G) ‘ DUTS [57] CUHK [50] ‘ CODIOK [14] CAMO [28] ‘ Kvasir [25] ISIC 2017 [6]
atio (7o
\ |F 1 Sat Bot F§ 1 Sat Bst|Ff 1 Sal Eot F§ 1 Sat By t|F 1 Sal Eo 1 F¥ 1 Sat Est
Linear 85.51 0/0.00% 117.18 24.20| .658 .841 .832 .675 .659 .670| .657 .860 .866 .707 .853 .852| .482 .782 .747 .571 .779 .755
Decoder Only 85.51 0/0.00% 117.18 24.20| .756 .879 .889 .723 .683 .743|.769 .888 918 .796 .886 .904 |.723 .870 .872 .772 .839 .839
wio TR VPT [26] 86.10 0.59/0.68% 122.52 27.98| .896 .931 .938 .800 .752 .809 | .816 .903 .936 .850 .908 .933|.891 .939 951 .860 .872 .883
AdaptFormer [4]| 86.70 1.19/1.37% 118.70 27.71| 906 .937 .946 .767 .712 .791|.826 .906 .941 .866 .911 .939 | 935 .957 .967 .874 .855 .874
LoRA [23] 86.86 1.33/1.53% 118.90 26.45| .897 .932 .942 764 .712 .803 | .814 .897 .935 .852 .905 .934|.936 .956 .966 .880 .862 .882
EVP [35] 86.25 0.74/0.86% 117.44 27.82| .887 .929 .935 .771 .736 .791|.803 .900 .933 .832 .901 .921|.857 .934 943 .854 .866 .875
DyT [65] 86.71 1.20/1.38% 95.51 29.02| .859 .921 .930 .735 .691 .759|.796 .894 .934 .839 .901 .932|.897 .944 963 .843 .868 .884
w/ TR | Ours 87.86 2.57/292% 90.83 28.84| .895 .933 .944 .793 .749 .812| .810 .899 .935 .842 .902 .932|.938 .960 .975 .871 .862 .881
Ourst 87.86 2.57/292% 91.54 28.11|.901 .935 .947 755 .698 .776 | .808 .899 .936 .848 .905 .933|.940 959 974 .875 .863 .882

strates the smallest FLOPs among the evaluated approaches,
indicating a significant advantage in inference efficiency.
Our method also achieves a competitive Fig’ of 0.901 on
the DUTS dataset, closely aligning with the performance
of AdaptFormer, which records a F’ é" of 0.906. It is im-
portant to highlight that AdaptFormer does not implement
TR, which suggests that our approach effectively balances
complexity and performance.

4.3. Recovering High-Frequency Components

In Fig. 1 (f), we show the relative log amplitude of
Fourier-transformed representations for both TR and our
method. The results highlight that our model effectively re-
stores high-frequency components, particularly in the mid-
dle blocks, between the 6'" and 10*" layers. While our
approach leverages a convolution-based token compensator
to enhance high-frequency recovery, we also observe that
further distillation of the fine-tuned model with the pre-
trained model significantly boosts this process. This en-
hancement is likely due to the pre-trained model’s prior
exposure to high-frequency components during MIM pre-
training. Moreover, the learnable masks integrated into
the fine-tuned model may also serve as a latent regularizer,
guiding the model to focus on high-frequency components
and local patterns. This mechanism improves the model’s
ability to capture intricate details, which are essential for
high-precision pixel-level tasks.

4.4. Ablation Study

In order to assess the effectiveness of each component of
our methods, we conducted ablation studies on DUTS and
Kvasir datasets.

Different components. In Tab. 2, we present an ablation
study evaluating four combinations of components within
our proposed methods. we assess the impact of applying TR
both with and without the inclusion of the token compen-
sator (TC), as well as the effects of utilizing distillation in

Table 2. Ablation study on various aspects. The rows highlighted
in gray represent our method (default setting). Bold values denote
the optimal performance.

Methods | DUTS Kvasir
|Fg 1 Sat Byt Fy 1 Sat Byt
No TR 906 937 .946 935 .957 .967
DyT-TD 859 921 930 .897 .944 .963
Components |0 TR 886 930 942 .899 .942 .959
Our TR + Distill. 887 931 .943 928 954 973
Our TR + TC 895 933 .944 938 .960 .975
Our TR + TC + Distill. 901 935 947 940 959 974
Rank of 24 (0.52 M) 878 927 939 910 .946 .960
token compensator |45 (1:38 M) 895 933 .944 938 960 .975
96 (2.90 M) 896 934 .945 906 943 958
DyT-0.3 (66.39 GFLOPs) | .861 909 .922 .856 .918 .936
DyT-0.5 (95.51GFLOPs) | .859 921 930 .897 .944 .963
Token activation rate | PYT-0-7 (107.38 GFLOPs) | 871 928 934 908 .938 .954
Ours-0.3 (67.91 GFLOPs) | .863 917 926 911 .935 .950
Ours-0.5 (90.83 GFLOPs) | .895 933 .944 .938 .960 .975
Ours-0.7 (106.14 GFLOPs) | .883 .932 .940 .920 .951 .963

these configurations. Our results indicate that the configura-
tion incorporating both the token compensator and distilla-
tion yields the highest performance on the DUTS dataset. In
the Kvasir dataset, the method without distillation demon-
strates a slight performance advantage on S-measure and
E-measure. This observation implies that while distillation
is beneficial for certain tasks, the inherent characteristics of
the Kvasir dataset may favor configurations that prioritize
direct token manipulations.

Rank of token compensator. Furthermore, Tab. 2 com-
pares the performance of three different ranks of the token
compensator. The rank of 48 achieves the best results on
the Kvasir dataset, while it performs slightly lower than the
rank of 96 on the DUTS dataset. Considering the trade-
off between performance and the number of parameters, we
have chosen a rank of 48 to achieve an optimal balance.
Token activation rate. Tab. 2 presents the impact of vary-
ing token activation rates of 0.3, 0.5, and 0.7 on model per-
formance. Our methods achieve optimal results on both the
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Figure 4. Visualization of the effects of our token reduction on DINOv2-B. The masked regions indicate areas of lower relevance, allowing
the model to focus on informative parts of the images. Notably, some objects retain only their boundaries such as the red mushroom.
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Figure 5. Segmentation outputs from various methods. Zoom in
for a clearer view.

DUTS and Kvasir datasets when the token activation rate is
set to 0.5. Furthermore, at this setting, our approach demon-
strates a reduced number of FLOPs compared to DyT.

4.5. Analysis of Generalization Ability

Previous research [34, 65] have primarily focused on task-
specific effectiveness, often ignoring the capacity of models
to generalize to novel tasks. To address this gap, we employ
a zero-shot COS setting [29] to further evaluate the general-
ization capabilities of our proposed methods. Specifically,
we utilize our well-trained model on the DUTS dataset for
SOS, to directly address the problem of COS. As demon-
strated in Tab. 3, our methods outperform previous ap-
proaches, such as CaMF [29] and GenSAM [24], particu-
larly in terms of S-measure and E-measure. These results
suggest that the restored diversity of attention and the high-
frequency components in representations contribute signif-
icantly to the model’s effectiveness in this zero-shot COS
which is biased towards high-frequency information [29].

4.6. Visualization

Masked tokens. In Fig. 4, we illustrate the effects of our
token reduction method. In most images, the informative
areas are retained while less relevant regions are masked,
demonstrating that our approach effectively reduces compu-
tational requirements by prioritizing the processing of use-
ful areas. Notably, we observe that certain objects, such as
those in the bottom left and middle images, have only their

Table 3. Comparison with other supervised (S), weakly-supervised
(WS), and zero-shot (ZS) COS methods. Bold values denote the
best performance.

Methods | Sup. | CAMO CODI10K

| IE§ 1 Sat Est FY 1t Sat Byt
SINet [13] S |.606 .751 .829 .551 .771 .806
ZoomNeXt [45]| S |.857 .889 .945 .827 .898 .956
CRNet [20] WS | .641 735 .815 .576 .733 .805
GenSAM [24] | ZS | .659 719 .775 .681 .775 .838
CaMF [29] ZS | 729 788 814 .717 .808 .832
Ours ZS | 730 .812 .838 .695 .812 .844

boundaries unmasked. This suggests that our method em-
phasizes the local patterns and high-frequency components
of the images, resulting in a relatively higher masking rate
to further conserve computational resources.
Segmentation maps. As shown in Fig. 5, our method pro-
duces segmentation maps with smoother boundaries com-
pared to other methods. Additional results are provided in
the Supp..

5. Conclusion

In this paper, we investigate the impact of TR on attention
mechanisms and visual representations, identifying barri-
ers that impede its application within PEFT for pixel-level
tasks. We introduce a novel TR-PEFT method that effec-
tively preserves attention diversity, high-frequency compo-
nents, and the completeness of the token sequence while re-
ducing the length of tokens. This innovative approach aims
to achieve an optimal balance between performance and in-
ference efficiency, thereby enhancing the practical applica-
bility of PEFT methods in pixel-level tasks.

Acknowledgements

This work was supported by the Key Program for Inter-
national Cooperation of Ministry of Science and Technol-
ogy of China (No0.2024YFE0100700) and the National Nat-
ural Science Foundation of China (NSFC) under Grant
62020106011.



References

(1]

2

—

(3]

[4

—_

[5

—

(6]

[7

—

[8

—

(9]

[10]

(1]

[12]

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao
Zhang, Christoph Feichtenhofer, and Judy Hoffman. Token
merging: Your ViT but faster. In International Conference
on Learning Representations, 2023. 1, 3

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In Pro-
ceedings of the International Conference on Computer Vi-
sion (ICCV), 2021. 1

Mengzhao Chen, Wenqgi Shao, Peng Xu, Mingbao Lin,
Kaipeng Zhang, Fei Chao, Rongrong Ji, Yu Qiao, and Ping
Luo. Diffrate: Differentiable compression rate for efficient
vision transformers. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 17164—
17174,2023. 1,3

Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang,
Yibing Song, Jue Wang, and Ping Luo. Adaptformer:
Adapting vision transformers for scalable visual recogni-
tion. Advances in Neural Information Processing Systems,
35:16664-16678, 2022. 3,4,7,2,5,6

Ming-Ming Cheng and Deng-Ping Fan. Structure-measure:
A new way to evaluate foreground maps. IJCV, 129(9):
2622-2638, 2021. 6

Noel CF Codella, David Gutman, M Emre Celebi, Brian
Helba, Michael A Marchetti, Stephen W Dusza, Aadi
Kalloo, Konstantinos Liopyris, Nabin Mishra, Harald Kit-
tler, et al. Skin lesion analysis toward melanoma detection:
A challenge at the 2017 international symposium on biomed-
ical imaging (isbi), hosted by the international skin imaging
collaboration (isic). In 2018 IEEE 15th international sym-
posium on biomedical imaging (ISBI 2018), pages 168—172.
IEEE, 2018. 3,6,7,2,4

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proc.
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016. 2, 4

Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr
Bojanowski. Vision transformers need registers. In The
Twelfth International Conference on Learning Representa-
tions, 2024. 4

Alexey Dosovitskiy. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 1

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. ICLR, 2021. 4

Deng-Ping Fan, Ming-Ming Cheng, Yun Liu, Tao Li, and Ali
Borji. Structure-measure: A new way to evaluate foreground
maps. In ICCV, 2017. 6

Deng-Ping Fan, Cheng Gong, Yang Cao, Bo Ren, Ming-
Ming Cheng, and Ali Borji. Enhanced-alignment measure

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

for binary foreground map evaluation. In IJCAI. AAAI

Press, 2018. 6

Deng-Ping Fan, Ge-Peng Ji, Guolei Sun, Ming-Ming Cheng,
Jianbing Shen, and Ling Shao. Camouflaged object detec-
tion. In CVPR, 2020. 3, 6, 8

Deng-Ping Fan, Ge-Peng Ji, Ming-Ming Cheng, and Ling
Shao. Concealed object detection. IEEE TPAMI, 44(10):
6024-6042, 2022. 3,6,7,2,5

Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu,
Xinggang Wang, Tiejun Huang, Xinlong Wang, and Yue
Cao. Eva: Exploring the limits of masked visual represen-
tation learning at scale. arXiv preprint arXiv:2211.07636,
2022. 1

Yuxin Fang, Quan Sun, Xinggang Wang, Tiejun Huang, Xin-
long Wang, and Yue Cao. Eva-02: A visual representa-
tion for neon genesis. Image and Vision Computing, page
105171,2024. 1,3

Shengxi Gui, Shuang Song, Rongjun Qin, and Yang Tang.
Remote sensing object detection in the deep learning era—a
review. Remote Sensing, 16(2):327, 2024. 3

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. Towards a unified view of
parameter-efficient transfer learning. In International Con-
ference on Learning Representations, 2022. 3

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770-778, 2016. 4

Ruozhen He, Qihua Dong, Jiaying Lin, and Rynson
W.H. Lau. Weakly-supervised camouflaged object detection
with scribble annotations. AAAI 37(1):781-789, 2023. 8
Charles Herrmann, Richard Strong Bowen, and Ramin
Zabih. Channel selection using gumbel softmax. In Eu-
ropean conference on computer vision, pages 241-257.
Springer, 2020. 5

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. Parameter-efficient transfer
learning for NLP. In Proceedings of the 36th International
Conference on Machine Learning, 2019. 1, 3,4

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
LoRA: Low-rank adaptation of large language models. In In-
ternational Conference on Learning Representations, 2022.
1,3,7,2,4,5,6

Jian Hu, Jiayi Lin, Shaogang Gong, and Weitong Cai. Relax
image-specific prompt requirement in sam: A single generic
prompt for segmenting camouflaged objects. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, pages
12511-12518,2024. 8

Debesh Jha, Pia H Smedsrud, Michael A Riegler, Pal
Halvorsen, Thomas De Lange, Dag Johansen, and Havard D
Johansen. Kvasir-seg: A segmented polyp dataset. In
MultiMedia modeling: 26th international conference, MMM
2020, Daejeon, South Korea, January 5-8, 2020, proceed-
ings, part Il 26, pages 451-462. Springer, 2020. 3, 6, 7, 2,
4



[26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

[37]

(38]

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie,
Serge Belongie, Bharath Hariharan, and Ser-Nam Lim. Vi-
sual prompt tuning. In European Conference on Computer
Vision (ECCV),2022. 1,3,7,2,4,5,6

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 4015-4026, 2023. 1, 3
Trung-Nghia Le, Tam V. Nguyen, Zhongliang Nie, Minh-
Triet Tran, and Akihiro Sugimoto. Anabranch network for
camouflaged object segmentation. CVIU, 184:45-56, 2019.
6,7,2,5

Cheng Lei, Jie Fan, Xinran Li, Tianzhu Xiang, Ao Li, Ce
Zhu, and Le Zhang. Towards real zero-shot camouflaged
object segmentation without camouflaged annotations. arXiv
preprint arXiv:2410.16953, 2024. 8

Tao Lei, Junwen Bai, Siddhartha Brahma, Joshua Ainslie,
Kenton Lee, Yanqi Zhou, Nan Du, Vincent Zhao, Yuexin
Wu, Bo Li, et al. Conditional adapters: Parameter-efficient
transfer learning with fast inference. Advances in Neural In-
formation Processing Systems, 36:8152-8172, 2023. 1, 3,
4

Guanbin Li and Yizhou Yu. Visual saliency based on multi-
scale deep features. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 5455—
5463, 2015. 2,5

Youwei Liang, Chongjian Ge, Zhan Tong, Yibing Song,
Jue Wang, and Pengtao Xie. Not all patches are what you
need: Expediting vision transformers via token reorganiza-
tions. In International Conference on Learning Representa-
tions, 2022. 1,2,3

Mingbao Lin, Mengzhao Chen, Yuxin Zhang, Chunhua
Shen, Rongrong Ji, and Liujuan Cao. Super vision trans-
former. International Journal of Computer Vision, 131(12):
3136-3151, 2023. 1

Ting Liu, Xuyang Liu, Liangtao Shi, Zunnan Xu, Siteng
Huang, Yi Xin, and Quanjun Yin. Sparse-Tuning: Adapting
vision transformers with efficient fine-tuning and inference.
arXiv preprint arXiv:2405.14700, 2024. 1,2, 3, 8
Weihuang Liu, Xi Shen, Chi-Man Pun, and Xiaodong Cun.
Explicit visual prompting for low-level structure segmenta-
tions. In CVPR, pages 19434-19445, 2023. 3,7,2,5,6
Yifei Liu, Mathias Gehrig, Nico Messikommer, Marco Can-
nici, and Davide Scaramuzza. Revisiting token pruning for
object detection and instance segmentation. In Proceed-
ings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pages 2658-2668, 2024. 3, 4

Yuang Liu, Qiang Zhou, Jing Wang, Zhibin Wang, Fan
Wang, Jun Wang, and Wei Zhang. Dynamic token-pass
transformers for semantic segmentation. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Com-
puter Vision, pages 1827-1836, 2024. 3, 4

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 3431-3440, 2015. 1

(39]

(40]

(41]

[42]

(43]

[44]

(45]

[46]

(47]

(48]

(49]

(501

(51]

[52]

Ilya Loshchilov and Frank Hutter.

tic gradient descent with warm restarts.
arXiv:1608.03983, 2016. 3

Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101,2017. 6, 3
Yunqiu Lyu, Jing Zhang, Yuchao Dai, Aixuan Li, Bowen
Liu, Nick Barnes, and Deng-Ping Fan. Simultaneously lo-
calize, segment and rank the camouflaged objects. In CVPR,
2021. 2,5

Ran Margolin, Lihi Zelnik-Manor, and Ayellet Tal. How to
evaluate foreground maps? In CVPR, pages 248-255, 2014.
6

Vida Movahedi and James H Elder. Design and perceptual
validation of performance measures for salient object seg-
mentation. In 2010 IEEE computer society conference on
computer vision and pattern recognition-workshops, pages
49-56. IEEE, 2010. 2, 5

Maxime Oquab, Timothée Darcet, Theo Moutakanni, Huy V.
Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez,
Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Rus-
sell Howes, Po-Yao Huang, Hu Xu, Vasu Sharma, Shang-
Wen Li, Wojciech Galuba, Mike Rabbat, Mido Assran, Nico-
las Ballas, Gabriel Synnaeve, Ishan Misra, Herve Jegou,
Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr Bo-
janowski. Dinov2: Learning robust visual features without
supervision, 2023. 1,2, 6, 3

Youwei Pang, Xiaoqi Zhao, Tian-Zhu Xiang, Lihe Zhang,
and Huchuan Lu. Zoomnext: A unified collaborative pyra-
mid network for camouflaged object detection. /IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2024.
8

Namuk Park and Songkuk Kim. How do vision transformers
work? In International Conference on Learning Represen-
tations, 2022. 2, 6, 1

Namuk Park, Wonjae Kim, Byeongho Heo, Tackyung Kim,
and Sangdoo Yun. What do self-supervised vision transform-
ers learn? In International Conference on Learning Repre-
sentations, 2023. 1, 2

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé,
Kyunghyun Cho, and Iryna Gurevych. AdapterFusion: Non-
destructive task composition for transfer learning. In EACL,
pages 487-503, 2021. 3

Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie
Zhou, and Cho-Jui Hsieh. Dynamicvit: Efficient vision
transformers with dynamic token sparsification. Advances
in neural information processing systems, 34:13937-13949,
2021. 1,3, 4

Jianping Shi, Li Xu, and Jiaya Jia. Discriminative blur de-
tection features. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2965—
2972,2014. 6,7, 2

Juan Silva, Aymeric Histace, Olivier Romain, Xavier Dray,
and Bertrand Granado. Toward embedded detection of
polyps in wce images for early diagnosis of colorectal can-
cer. International journal of computer assisted radiology and
surgery, 9:283-293, 2014. 2

Przemystaw Skurowski, Hassan Abdulameer, J Blaszczyk,
Tomasz Depta, Adam Kornacki, and P Koziel. Animal

Sgdr:  Stochas-
arXiv preprint



(53]

[54]

[55]

[56]

[57]

(58]

[59]

(60]

[61]

[62]

[63]

[64]

[65]

camouflage analysis: Chameleon database.
manuscript, 2(6):7, 2018. 2, 5

Alexander Strehl and Joydeep Ghosh. Cluster ensembles—a
knowledge reuse framework for combining multiple parti-
tions. Journal of machine learning research, 3(Dec):583—
617,2002. 2

Nima Tajbakhsh, Suryakanth R Gurudu, and Jianming
Liang. Automated polyp detection in colonoscopy videos
using shape and context information. IEEE transactions on
medical imaging, 35(2):630-644, 2015. 2, 6

A Vaswani. Attention is all you need. Advances in Neural
Information Processing Systems, 2017. 1

Unpublished

Di Wang, Jing Zhang, Bo Du, Gui-Song Xia, and Dacheng
Tao. An empirical study of remote sensing pretraining. /[EEE
Transactions on Geoscience and Remote Sensing, 61:1-20,
2023. 3

Lijun Wang, Huchuan Lu, Yifan Wang, Mengyang Feng,
Dong Wang, Baocai Yin, and Xiang Ruan. Learning to de-
tect salient objects with image-level supervision. In CVPR,
2017.6,7,2,5

Zhehao Wang, Xian Lin, Nannan Wu, Li Yu, Kwang-Ting
Cheng, and Zenggiang Yan. Dtmformer: Dynamic token
merging for boosting transformer-based medical image seg-
mentation. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, pages 5814-5822, 2024. 3, 4

W.Liu, X.Shen, C.-M.Pun, and X.Cun. Explicit visual
prompting for universal foreground segmentations. arXiv
preprint arXiv:2305.18476,2023. 3

Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and
Jian Sun. Unified perceptual parsing for scene understand-
ing. In European Conference on Computer Vision. Springer,
2018. 1

Zhenda Xie, Zigang Geng, Jingcheng Hu, Zheng Zhang, Han
Hu, and Yue Cao. Revealing the dark secrets of masked im-
age modeling. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 14475—
14485, 2023. 1

Qiong Yan, Li Xu, Jianping Shi, and Jiaya Jia. Hierarchical
saliency detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1155-1162,
2013. 2,5,6

Hongxu Yin, Arash Vahdat, Jose Alvarez, Arun Mallya, Jan
Kautz, and Pavlo Molchanov. A-ViT: Adaptive tokens for ef-
ficient vision transformer. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
2022. 1

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov,
Pierre Ruyssen, Carlos Riquelme, Mario Lucic, Josip Djo-
longa, Andre Susano Pinto, Maxim Neumann, Alexey Doso-
vitskiy, et al. A large-scale study of representation learning
with the visual task adaptation benchmark. arXiv preprint
arXiv:1910.04867, 2019. 4

Wangbo Zhao, Jiasheng Tang, Yizeng Han, Yibing Song, Kai
Wang, Gao Huang, Fan Wang, and Yang You. Dynamic tun-
ing towards parameter and inference efficiency for vit adap-
tation. arXiv preprint arXiv:2403.11808, 2024. 1, 3,4, 6,7,
8,2,5

[66]

[67]

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela
Barriuso, and Antonio Torralba. Scene parsing through
ade20k dataset. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 633-641,
2017. 2,4

Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang
Xie, Alan Yuille, and Tao Kong. ibot: Image bert pre-training
with online tokenizer. International Conference on Learning
Representations (ICLR), 2022. 1, 3



Rethinking Token Reduction with Parameter-Efficient Fine-Tuning in ViT for
Pixel-Level Tasks

Supplementary Material

6. Attention Distance Analysis

In this paper, we measure the average distance spanned by
attention weights at different layers. This attention distance
is analogous to receptive field size in CNNs [9]. Below, we
outline the process for calculating the normalized mean at-
tention distance. For simplicity, we omit the block index
1. First, we compute the distance matrix based on P. This
involves calculating the distances of each token relative to
all other tokens, resulting in a distance matrix D € RP*P,
where p denotes the length of the patch token. Follow-
ing the principles of self-attention [9, 55], we first com-
pute the query embedding QQ and key embedding K of the
patch tokens P. Next, we obtain the attention weights, de-
noted as A using the formula A = QK. We represent
the attention weights for each head as A ;. Subsequently,
we derive the weighted distance matrix W ; by calculating
W, =D © A;. Finally, for the mean attention distance of
J th head, we can use the following formula:

p p
S Wion (15)
m=1n=1

To compute the normalized mean attention distance, we ap-
ply min-max normalization to d = [d;]%_,, where N de-
notes the number of heads in the attention.

dj =

=

7. Mutual Information Analysis

Normalized Mutual Information is used to measure the at-
tention collapse [47]. Let pg(q) and px (k) be the spatial
distribution of query embeddings Q and key embeddings
K and assume that these query tokens are uniformly dis-
tributed since a single query token is given for each spatial
coordinate. That is pg(q) = % Our goal is to measure the
mutual information of the pg(¢) and px (k).

I(g; k) = ZPQK(q,k)logm, (16)

where pox (¢, k) = 7(k|lg)po(q) represents the joint dis-
tribution of pg(¢) and pk (k) and w(k|g) denotes the con-
ditional distribution, which is the attention weights after
softmax normalization. Since pg(q) is constant, px (k) =
por (g, k) = m(k|q)pg(q). Then, we get normalized mu-
tual information I, 5y, by

; A7)

where H(q) and H (k) are the entropy of pg(¢) and px (k),
respectively.

8. Fourier Analysis

Following [46, 47], let P be patch token sequence. We be-
gin by applying the fast Fourier transform (FFT) to P, fol-
lowed by a conversion to obtain the log amplitude:

d = log |[FFT(P)| (18)

Subsequently, we extract the half-diagonal components, de-
noted as ¢’. The relative log amplitudes are then computed
as follows:

A=6—6 .., 19)
where ¢/, .. represents the maximum amplitude, identified
as the first element of &'

9. Decoder

The application of PEFT to complex downstream tasks ne-
cessitates the incorporation of a decoder that introduces
non-linearity, in contrast to a simple linear layer in [44].
In this work, we aim to demonstrate the capacity of PEFT
methods to effectively transfer knowledge and the inductive
bias introduced by our approach. To mitigate the effects
of inductive bias associated with intricately designed de-
coders, such as those based on convolutional architectures
like UperNet [60], we implement a MLP-based decoder.
The structure of our decoder can be represented as follows:

Decoder (-) = MLP (Up (MLP (+))), (20)

where Up denotes an upsampling operation using bilinear
interpolation.

10. Loss Functions

The total loss function in our approach is a composite of
three components: the segmentation loss L., the distilla-
tion loss L.,s, and a regularization term L,.;., which con-
trols the mask rate k. The overall loss is defined as:

L= £seg + A1£7‘a7§e + AQ‘Ccos (21)

where A\; and A, are hyperparameters that balance the con-
tributions of the L4 and L.

The segmentation loss L., combines binary cross-
entropy (BCE) and DICE to regularize the generation of
segmentation masks.

‘Cseg = AbceEbCE + )\diceﬁdicey (22)



where Ayce, and Ay are hyperparameters that balance the
contributions of the BCE and DICE loss. The BCE loss
Lpce and DICE loss L4;.. are defined as:

1 LK .
EmeWE;;ka%YLm
+«1—Yﬂ%(1—Y»mn>,
@3
e+2y 0 W, (Y@Y)mn
Lijice =1 — = (24

€+ Ymet Xones (Y + Y)
where Y and Y € RE*XW represent the ground truth and
predicted segmentation maps, respectively, with values in
the range [0, 1]. The term e is a small constant added to
prevent division by zero.

We directly adopt the Ada loss from [65] to control the
mask rate.
h

N w
Erate:<Nth z;mz:z:: mn_
(25)

where M4, € RV denotes the mask at i** transformer
block for patch tokens, N represent the total number of
transformer blocks, and k is the target mask rate.

For distillation, we use cosine similarity to align the
representations of the fine-tuned and pre-trained models.
The logits from both models are processed through an
MLP-based distillation head, yielding XN and XV, where
XN, XN ¢ RUHP)*d_ The distillation loss is defined as:

l+p

XN . XN
Lops =1 -5 2t i (26)
; XV 1Y)

11. Implementation Details

Baselines. We compare our method with several ap-
proaches, including linear probing, fine-tuning of the de-
coder only, and VPT [26], which inserts learnable tokens
into the hidden states of each transformer block. Addition-
ally, we consider AdaptFormer [4], which adds trainable
low-rank MLP layers in parallel to the FFN layer within
a transformer block, and LoRA [23], which incorporates
trainable low-rank linear layers alongside the frozen linear
weights. Finally, we include EVP [35], which integrates
high-frequency priors with parallel adapters in the trans-
former blocks.

Table 4 presents the implementation details for training
binary segmentation tasks.
Salient object segmentation. We utilize four widely recog-
nized datasets for salient object segmentation: DUTS [57],

ECSSD [62], SOD [43], and HKU-IS [31]. The DUTS
dataset comprises 10,553 training images and 5,019 testing
images. The ECSSD dataset includes 1,000 testing images,
while the SOD dataset consists of 300 testing images. Addi-
tionally, the HKU-IS dataset contains 4,447 testing images.
All methods are trained on the training set of DUTS [57]
and evaluated on the testing sets of DUTS, ECSSD, SOD,
and HKU-IS.

Defocus blur detection. Following the methodology
presented in [50], we conduct training on the CUHK
dataset [50], which consists of a total of 704 samples ex-
hibiting partial defocus. The network is trained using 604
images from the CUHK dataset, with testing performed on
the remaining images.

Camouflaged object segmentation. To assess our meth-
ods, we select four commonly utilized datasets for cam-
ouflaged object segmentation. The COD10K dataset [14]
comprises 3,040 training samples and 2,026 testing sam-
ples. The CAMO dataset [28] provides 1,000 images
for training and 250 for testing. The NC4K dataset [41]
contains 4,121 testing samples, while the CHAMELEON
dataset [52] includes 76 testing images. In alignment with
[14], we train our methods on the training sets of COD10K
and CAMO, and we evaluate their performance on the test-
ing sets of COD10K, CAMO, NC4K, and CHAMELEON.
Polyp segmentation. For polyp segmentation, we em-
ploy three datasets: Kvasir [25], ETIS [51], and CVC-
ColonDB [54]. The Kvasir dataset includes 1,100 training
images and 196 testing images. The ETIS dataset contains
196 images, while CVC-ColonDB comprises 612 images.
Our training is conducted on the training set of Kvasir, with
evaluation performed using the testing sets of ETIS, CVC-
ColonDB, and Kvasir.

Skin lesion segmentation. For skin lesion segmentation,
we focus on the ISIC 2017 dataset [6], which provides 2,000
training images and 600 testing images.

Semantic segmentation. We utilize two foundational
datasets for semantic segmentation: ADE20K [66] and
Cityscapes [7]. Following [44], we conduct training and
testing on ADE20K and Cityscapes, respectively. As pre-
sented in Table 5, we train for a total of 8 epochs on
ADE20K and 48 epochs on Cityscapes, thereby ensuring
that the number of iterations remains approximately consis-
tent across both datasets.

12. More Experiment Results
12.1. Ablation Study

TR placement. Attention mechanisms incur notable com-
putational overhead for long sequences. Our ablation study
in Tab. 6 evaluates the effects of TR placement, demonstrat-
ing that pre-attention TR application significantly degrades
pixel-level task performance. For instance, Fi’ scores on



Table 4. Experimental settings for binary segmentation datasets. We train all methods using the same hyperparameters.

Configuration DUTS CUHK COD10K+CAMO Kvasir ISIC 2017
Optimizer AdamW [40]

Base learning rate 1.5e-4

Weight decay le-4

Batch size 10

Learning rate schedule Cosine decay [39]

Warmup epochs 4 10 10 10 5
Training epochs 16 40 50 40 20

Table 5. Experimental settings for semantic segmentation datasets.
We train all methods using the same hyperparameters.

Configuration ADE20K Cityscapes
Optimizer AdamW [40]
Base learning rate 1.5e-4
Weight decay le-4

Batch size 4

Learning rate schedule Cosine decay [39]
Warmup epochs 1 6
Training epochs 8 48

Table 6. Ablation study on TR placement and different backbones.
The rows highlighted in gray represent our method (default set-
ting). Bold values denote the optimal performance under TR.

Methods | DUTS Kvasir
|Fg 1 Sat Est FY 1 Sat Est
No TR 906 937 946 .935 957 .967
TR Placement | Attention 878 926 .937 .865 .921 .933
FFN 895 .933 944 938 .960 .975
iBOT-Base [67] .826 .893 905 .925 957 .968

iBOT-Large [67] .847 904 917 .941 964 973
EVAO02-Base [16] .883 923 934 953 .967 .979
EVAO2-Large [16] | .901 .934 .943 .965 .974 .984
DINOv2-Base [44] | .895 .933 .944 .938 .960 .975
DINOv2-Large [44] | .908 .940 .949 .958 .969 .980

Backbones

DUTS decline to 0.878 (vs. 0.895 when TR is applied to
FEN), with analogous performance reductions observed on
the Kvasir dataset. This aligns with [65]’s findings in im-
age classification. Future work should explore effective TR
application in attention for pixel-level tasks without com-
promising performance.

Different backbones. To assess the generalization and
scalability of our method, we conduct experiments on back-
bones with diverse attention properties (e.g. DINOv2 [44],
EVAO02 [16], iBOT [67]). As shown in Tab. 6, our method
achieves consistent performance across these backbones.
Furthermore, when scaling to larger variants, performance
improves with model size, empirically demonstrating scal-
ability.

12.2. Segmentation Results

Comparison with recent TR methods. To evaluate our
method against existing TR approaches for pixel-level
tasks, we conduct comparisons in Tab. 7. We evaluate re-
cent TR methods specialized for distinct pixel-level tasks,
including DTMFormer [58] in medical image segmentation,
DoViT [37] in semantic segmentation, and SViT [36] in
instance or semantic segmentation. Experiments are per-
formed on established benchmarks, including Kvasir and
ISIC 2017 for medical image segmentation, and ADE20K
and Cityscapes for semantic segmentation, ensuring consis-
tency with prior experimental setups.

Semantic Segmentation. In Table 8, our methods
demonstrate superior performance relative to DyT on both
ADE20K and Cityscapes. Notably, our approach outper-
forms AdaptFormer, a method that does not incorporate
TR. This advantage may stem from our method’s ability to
maintain the diversity of attention while the high-frequency
components aggregated by the token compensator posi-
tively influence multi-class segmentation. This effect is
particularly significant on ADE20K, which includes 151
classes, in contrast to Cityscapes, which has only 34 classes.
Additionally, our methods achieve performance compara-
ble to that of PEFT methods without TR on the Cityscapes
dataset.

Salient object segmentation. Table 9 presents the results
of our evaluation on salient object segmentation (SOS). Our
method demonstrates superior performance compared to
DyT across all SOS datasets, while achieving performance
levels comparable to methods that do not utilize TR. This
suggests that our approach effectively enhances fundamen-
tal segmentation capabilities.

Camouflaged object segmentation. In Table 10, we
demonstrate the performance of our method on four camou-
flaged object segmentation (COS) datasets. Our approach
achieves superior performance relative to DyT across all
datasets, showcasing its effectiveness in handling more
complex scenes. Furthermore, it attains performance lev-
els comparable to those of methods that do not incorporate
TR. This finding suggests that our method significantly en-
hances segmentation capabilities in challenging scenarios



Table 7. Comparison with full fine-tuning (full FT) TR methods.

‘ Total ‘ Trainable ‘ Semantic Segmentation ‘ Medical
Methods Params.  Params. (M)/) A\ppyoK [66] Cityscapes [7]]  Kvasir [25]  ISIC 2017 [6]
M) Ratio (%)
| | | mIOU (%)  mIOU (%) |F¥ 1 Sat Egt YT Suf Egt
DTMFormer [58]| 33.6 |33.6/100.0% R 870 926 941 .776 830 .821
Full FT w/ TR | DoViT [37] 88.5 |88.5/100.0%|  46.5 76.4 B
SVIT [36] 480 |48.0/100.0%| 448 76.2 -
PEFT w/ TR | YT 165] 867 | 12/1.4% 495 50.6 897 944 963 843 .868 .884
Ours 87.9 | 2.6/2.9% 52,6 67.3 938 960 975 871 862 .88l

Table 8. Quantitative and efficiency comparison of semantic
segmentation using parameter-efficient fine-tuning (PEFT), both
without and with token reduction (TR).

mIOU

Methods ‘FLOPS © ‘ ADE20K [66] Cityscapes [7] Avg.

Linear 117.08 45.9 60.9  54.1

o | VPT 261 122.52 492 61.8 555
W LoRA [23] 118.90 50.7 61.6 56.2
AdaptFormer [4]| 118.70 51.5 68.8 60.2

DyT [65] 97.87 495 506 500

WITR | s 107.55 526 673 60.0

associated with camouflaged objects.

Polyp segmentation. In Table 11, we present the per-
formance of our method on several medical segmentation
datasets. Our approach demonstrates superior performance
compared to DyT across all datasets, highlighting its effec-
tiveness in addressing the complexities inherent in medi-
cal images. Notably, our method outperforms all PEFT
methods without TR including AdaptFormer on Kvasir and
CVC-ColonDB. This finding indicates the robustness and
adaptability of our methods in medical segmentation tasks.

12.3. VTAB-1K Results

To evaluate the performance of our method on classifica-
tion tasks and its adaptation capabilities when training data
is limited, we employ the VTAB-1K [64] benchmark. Fol-
lowing the approach outlined in [65], we utilize a Vision
Transformer (ViT) pretrained on ImageNet-21k, maintain-
ing the same training scheme. In contrast to our segmen-
tation configuration, we adopt a significantly reduced rank
setting for this classification task, specifically configuring
the adapter rank at 6 and the token compensator rank at 2.
Results are summarized in Tab. 12. For TR-PEFT meth-
ods on natural images, our approach achieves one first-
rank and one second-rank result, outperforming DyT, which
ranks second in both instances. In specialized domains,
AdaptFormer demonstrates superior performance across
most datasets, while our method and DyT achieve compa-
rable performance. Conversely, in structured domains, our
method exhibits limitations due to limited dataset scale and
significant domain gaps between structured images and pre-
training data, necessitating larger training datasets than DyT

to achieve comparable performance.

13. More Visualization

13.1. Masked Tokens

We provide additional visualizations to illustrate the effects
of our token reduction methods across various scenes, in-
cluding simple, complex, and medical contexts. Fig. 6 dis-
plays the effects of our token reduction in a simple scene,
exemplified by the DUTS dataset. Fig. 7 demonstrates the
effects in a complex scene. Fig. 8 and Fig. 9 showcase the
impact of our token reduction methods in polyp segmenta-
tion and skin lesion segmentation, respectively.

Our method progressively masks tokens along object
boundaries as network layers increase. In Fig. 6, we ob-
served that our approach tends to mask inner object regions
while preserving boundary integrity. In other words, our
method retains only the boundary information of objects,
thereby achieving a relatively higher mask ratio within a
single image. In Fig. 7, Fig. 8, and Fig. 9, the masking
strategy effectively identifies concealed objects that require
fine-grained processing, demonstrating the effectiveness of
our approach. This strategy thereby enhances the model’s
confidence in target identification across various segmenta-
tion tasks.

13.2. Segmentation Maps

To further demonstrate the effectiveness of our method,
we present additional visualizations of segmentation maps
across diverse scenarios, including simple, complex, and
medical contexts. Specifically, Fig. 10 illustrates segmen-
tation results in a simple scene using the DUTS dataset as
a representative example. Fig. 11 highlights segmentation
performance in complex scenes, while Fig. 12 showcases
results in medical applications, specifically polyp segmen-
tation and skin lesion segmentation.

As depicted in Fig. 10, our method achieves superior per-
formance in simple scenes. The segmented regions gener-
ated by our approach exhibit smoother boundaries and finer
details, such as continuous thin lines, compared to com-
peting methods. Additionally, the segmentation maps pro-
duced by our method contain minimal noise, which can be



Table 9. Quantitative comparison of salient object segmentation.

Methods ‘ DUTS [57] ECSSD [62] SOD [43] HKU-IS [31]
[F§ 1 Sa® Bt F{ T Sa® Byt E§ 1 Sa® Byt Fy1 Sat Byt
Linear .658 841 .832 .777 .892 875 .715 .810 .785 .741 .881 .879
Decoder Only 756 879 889 .849 916 921 .787 .834 837 .817 .906 .924
w/o TR VPT [26] 896 931 938 .934 951 958 .830 .826 .824 914 .940 954
AdaptFormer [4]| .906 .937 946 .943 .955 .962 .865 .850 .859 .926 .946 .960
LoRA [23] 897 932 942 927 949 954 854 .851 .855 911 .940 954
EVP [35] 887 929 935 930 949 955 .846 .836 .832 912 .940 .953
DyT [65] 859 921 930 .902 .938 944 837 .849 855 .886 .931 .945
w/ TR |Ours 895 933 944 924 948 .958 .860 .851 .863 .908 .943 .960
Ourst 901 935 947 932 .948 957 .856 .850 .857 .917 .942 .958
Table 10. Quantitative comparison of camouflaged object segmentation.
2
Methods ‘ CODIO0K [14] CAMO [28] NC4K [41] CHAMELEON [52]
[FY 1 Sat Bot FY T Sat EsT FY1 Sat Byt FY 1 Sat Byt
Linear .657 .860 .866 .707 .853 .852 .750 .889 .891 .746 .892  .888
Decoder Only 769 888 918 .796 .886 .904 .831 .907 .925 .825 .908 .924
w/o TR VPT [26] 816 903 .936 .850 .908 .933 .869 .918 .941 .860 .926 .951
AdaptFormer [4] | .826 .906 .941 .866 .911 .939 .879 .922 946 .873 .926 .952
LoRA [23] 814 897 935 .852 905 934 867 913 .939 .855 .920 .944
EVP [35] .803 900 .933 .832 901 .921 .859 916 .937 .847 917 .938
DyT [65] 796 .894 934 839 901 .932 .851 910 .937 .834 .909 .943
w/ TR | Ours 810 .899 935 .842 902 .932 853 914 939 .834 915 936
OursT .808 .899 .936 .848 .905 .933 .859 915 .939 .860 .924 952

attributed to the integration of a learnable mask mechanism
that effectively suppresses irrelevant regions.

In complex scenes (Fig. 11), our method maintains its
advantage, particularly in preserving the continuity of thin
structures—a challenge where alternative approaches of-
ten produce fragmented results. For medical applications
(Fig. 12), our method demonstrates higher confidence lev-
els in delineating abnormal regions. Notably, in cases in-
volving ambiguous abnormal areas (e.g., the second row of
Fig. 12), our approach maintains clearer distinctions com-
pared to other methods, which exhibit uncertainty in such
regions.

14. Limitations and Future Work

While the proposed method demonstrates improved effi-
ciency in FFN computations through TR, two primary limi-
tations remain. First, it does not directly address the compu-
tational overhead of attention mechanisms in long-sequence
tasks. Our experiments in Tab. 6 show that applying to-
ken reduction before attention layers degrades performance
in pixel-level tasks, as evidenced by Fj3’ scores of 0.878

compared to 0.895 when token reduction is applied to FFN
on DUTS. This aligns with prior work [65], which iden-
tified similar challenges in image classification, indicating
that token reduction disrupts spatial dependencies essential
for attention-based feature refinement. Second, the method
demonstrates limited adaptability in structured image do-
mains such as medical or satellite imagery, where signifi-
cant domain gaps exist between pretraining data and target
tasks. Achieving performance comparable to DyT in these
domains requires substantially larger training datasets, un-
derscoring a dependency on data scale that may limit prac-
ticality in resource-constrained settings.

Future research should focus on optimizing the integra-
tion of token reduction with attention mechanisms to min-
imize computational cost in pixel-level tasks. This could
involve developing TR techniques that preserve attention
dynamics without significantly compromising performance.
Additionally, exploring the method’s adaptability to distant
image domains is essential. Further evaluation should ex-
tend to multimodal understanding and generation, to as-
sess the broader applicability and robustness of TR strate-
gies. Addressing these challenges could advance the de-



Table 11. Quantitative comparison of polyp segmentation.

Methods ‘

Kvasir [25]

ETIS [62] CVC-ColonDB [54]

[Fg 1 Sat Byt FY 1 Sat Est FY 1 Sal Ept

Linear 482 782 747 327 726 .680 .535 .816 .787

Decoder Only 723 870 .872 .531 .774 725 737 .863  .858

w/o TR VPT [26] 891 939 951 .587 .814 .778 .817 900 .906

AdaptFormer [4]| .935 957 967 .719 .873 .877 .864 912 .930

LoRA [23] 936 .956 966 .641 .839 .839 .850 .909 929

EVP [35] 857 934 943 618 .846 .831 .806 .898 .907

DyT [65] 897 944 963 .665 .859 .861 .827 .900 919

w/ TR |Ours 938 960 975 .681 .864 .871 .862 917 .936

Ourst 940 959 974 .691 .868 .862 .865 912 .929

Table 12. Quantitative comparison of polyp segmentation.
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AdaptFormer
LoRA

Parameter-efficient fine-tuning

70.8 91.2 70.5 98.8 90.9 86.6 54.3
67.1 91.4 69.4 98.8 90.4 85.3 54.0

83.0 95.8 84.4 76.3/81.9 64.3 49.3 80.3 76.3 45.7 31.7 41.1
84.9 95.3 84.4 73.6(82.9 69.2 49.8 78.5 75.7 47.1 31.0 44.0

72.3
72.3

VPT 78.8 90.8 65.8 98.0 88.3 78.1 49.6|81.8 96.1 83.4 68.4|68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8|69.4
Parameter-efficient fine-tuning with token reduction

DyT 70.4 94.2 68.6 98.0 90.3 86.5 51.5[87.1 95.3 84.2 72.2|79.2 60.8 51.0 79.9 79.7 55.1 34.0 40.9|72.5

Ours 68.3 94.4 68.8 98.6 89.9 84.7 52.2|87.1 95.7 83.8 72.6|81.1 60.7 51.1 79.9 83.0 50.9 30.0 43.3|72.4

velopment of efficient and accurate vision architectures for
diverse real-world applications.
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Figure 6. Visualization of the effects of our token reduction on DUTS dataset.
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Figure 7. Visualization of the effects of our token reduction on COD10K and CAMO dataset.
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Figure 8. Visualization of the effects of our token reduction on Kvasir dataset.
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Figure 9. Visualization of the effects of our token reduction on ISIC 2017 dataset.
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Figure 10. Visualization of the effects of our token reduction on ISIC 2017 dataset.
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Figure 11. Visualization of the effects of our token reduction on ISIC 2017 dataset.
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Figure 12. Visualization of the effects of our token reduction on ISIC 2017 dataset.
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