Light Transport-aware Diffusion Posterior Sampling
for Single-View Reconstruction of 3D Volumes
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Figure 11. Latent enhancement. Starting with a latent code 6’ ob-
tained from the original volume, a transformed version serves as
the initial solution 6. A few optimization steps are performed to
refine the latent representation 0, reducing artifacts and enhanc-
ing the peak signal-to-noise ratio (PSNR). During optimization,
a saliency map derived from 6y guides the process by adaptively
sampling positions in regions with more prominent features.

6. Enhancing Latent Space

Augmenting the original 1,000 instances in the Cloudy
dataset with additional volumes obtained via transforma-
tions requires increasing the encoding time significantly.
For example, if encoding 1,000 clouds requires 2 days on
an NVIDIA GeForce RTX 3090, performing a 14-fold mul-
tiplication would result in a total computational time of ap-
proximately one month.

We leverage the transformation consistency of our
monoplanar representation with respect to the zy-plane.
The key to reducing the encoding time from 2 minutes to
approximately 12 seconds lies in initializing the latent code
by applying the desired transformation directly to the orig-
inal latent representation. Instead of evaluating the repre-
sentation loss uniformly across all locations, we concen-
trate sampling in regions where features are most promi-
nent, guided by a distribution derived from a saliency map.
This approach uses the features of the initial solution, as the
final solutions are expected to remain close to the initializa-
tion (see Figure 11).

Another benefit of this refinement is the reduction of pat-
terns that typically emerge from clamping at the domain
boundaries when sampling rotated or scaled positions. This
helps prevent the generative model from misinterpreting
those artifacts as valid structures.

Notation Description

o¢(x) Extinction field, informally, the density
distribution of the particles in the space.

o(z) Scattering albedo: the probability of light
to be scattered after a particle interaction.

p(wi, wo) Phase function: directional distribution of
the scattered light.

B(w) Environment radiance coming from w.

T(x, <> xp)  Transmittance between two positions.

Ls(z,w) Scattered light at = towards w.

L.(z,w) Emitted light at = towards w.

Li(z,w) Incoming radiance at z from direction w.

Lo(z,w) Outgoing radiance at surface position x to-

wards direction w.

Table 3. Terms involved in the volume rendering equation. Notice
that all terms are wavelength-dependent.

7. Differentiable Volume Rendering Module

The rendering equation assumes that light travels un-
changed between visible surface positions, i.e., the incom-
ing radiance at a point x, from z;, remains unchanged;
Lij(xq,w) = L,(xp, —w). However, incorporating partic-
ipating media like clouds requires considering the interac-
tions of light with particles within the volume, due to scat-
tering and/or absorption effects (see Table 3 for the notation
used).

7.1. Volume Rendering Equation

The Volume Rendering Equation (VRE) computes the in-
coming radiance L;(xo,w) by integrating the contributions
of scattered and emitted light along a ray, as well as direct
contributions from surfaces. It accounts for transmittance
(T), scattering properties (o, ¢, and p), and either volume
emission or surface exiting radiance (L. or L,).

Given the scattered radiance at x in the direction w:

Ls(va):/ p(—wi,w)Li(x,w;) dw;,

i

the incoming radiance at any point in space, including cam-
era sensors, is computed as

d
L;i(zg,w) :/0 T(zo < )0 (w¢) [o(z) Ls(z, —w)

+ (1 = ¢(2)) Le(z, —w)] dt
+ T(x <> zq)Lo(zd, —w).
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The recursive nature of equation 4 is typically addressed
using path sampling methods. In the path-based approach,
apath z = xg, ...,z is sampled, where intermediate ver-
tices correspond to scattering events and the final vertex rep-
resents either an absorption event or a surface interaction.
The path throughput T'(z) captures the cumulative effects of
transmittance, densities, scattering albedo, and phase func-
tions along the path. In path-space, the expected radiance is
expressed as

L;i(zg,w) = /F(z)E(z) dz,

z

where F(z) represents either volume emission (L) or out-
going surface radiance (L, ), depending on the final vertex.
For simplicity, our analysis considers a single medium sur-
rounded by a “radiative environment shell” that emits radi-
ance inward (L, (z, —w) = B(w)).

Volumetric path tracing is a standard method for sam-
pling paths proportional to I'(z). However, in its basic form,
this approach often experiences high variance due to a mis-
match between the path throughput distribution I'(z) and
the radiance distribution of the environment. To address
this, next-event estimation reduces variance by consider-
ing direct contributions from the environment at each vertex
along the primary path.

7.2. Differentiable Rendering

Let R be the process of computing the appearance of the
volume D(#) subject to physical parameters ¢, by measur-
ing the arriving radiance L; to an array of W x H sensors,
ie.,

R(D(6); ¢) := {Le 117

with Iy = [ W (20, w) Li (20, w)dwodw. Here, zq,w

represents the incoming ray to the sensor, and We(k) is a
function that models the sensor’s response, typically used to
simulate complex lens optics or filter effects. The integral
is approximated by averaging multiple samples per pixel,
typically 64 in most cases.

Since camera parameters (which could affect W, or the
integral’s limits) are not considered, derivatives of R with
respect to its parameters propagate directly through the in-
tegral, i.e.:

WxH

OpoR(") = {/We(k)(:vo,w)(’“)le-(:vo,w)dxodw}
k=1

The propagation of the gradients V £ through all volu-
metric fields requires complex light-path sampling deposit-
ing the radiative quantities at every path interactions.

7.3. Differentiable VRE

The propagation of gradients to the argument of an integral
operator must adhere to the Leibniz Integral Rule. In this
case, the integral limits are independent of the parameters,
and there are no discontinuities in the fields. As a result,
gradients with respect to L; can be “propagated” directly to
the integral argument. Specifically,

OopLi(zo,w) = /89¢ [(2)E(2)] d=.

By applying the chain rule, the gradient of the loss func-
tion becomes

VL = /VLZL - 0pg [[(2)E(2)] dz.

This is the idea proposed by Niemier et al. [45], where
path sampling is used to “deposit” gradients across all fields
involved in the product I'. In [67], the same z is replayed to
compute both I" and OI'. A tailored sampler [46] is used to
compute 9, (,,)I", which becomes problematic when o (z;)
is small. A weighted path sampler [27] includes singular
paths with no more than one o(z;) = 0.

Summarizing, using techniques like DRT [46] or SPS
[27], gradients with respect to the fields, such as 9L /o (z),
can be computed. These fields may be represented using
various spatial structures, including complex neural models.
As long as the representations are differentiable, gradients
can propagate to their underlying parameters.

In practice, we use regular grids because they can be
efficiently queried and are easily differentiable. If a more
complex model is required, such as the volume decoder D,
values at the grid vertices are evaluated to obtain the inter-
mediate parameters y. Then, the gradients V., £ are back-
propagated through the model.

Finally, derivatives of R with respect to 6 and ¢ can be
obtained using the differentiable volume renderer, and with
this, the gradients of the loss function:

L =|ly—R(D®),9)|3,

that are required by the Diffusion Posterior Sampling and
the OPTIMIZATION method. In Fig. 12 we show some ex-
amples of the joint reconstruction of physical parameters ¢
(environment map) and density distributions of the cloud
determined by 6 with our proposed technique.

8. Parameterized Diffusion Posterior Sampling

Algorithm 2 outlines the adapted DPS method tailored for
our parameterized posterior sampling approach. Here, o
denotes the noise scheduling parameter at time step ¢. In
practice, we sample only 100 time steps with a stride of 10,
rather than sampling all steps. This adjustment also impacts
the scaling factor (;, which is proportionally amplified.
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Figure 12. Additional results for reconstructions of both, cloud and lighting conditions, varying the material settings of the cloud and
targeting different environment maps.
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Figure 13. Effect of {: Multiple DPS runs were performed with varying values of the ¢ multiplier. The top row shows the reconstruction’s
approximation to the target view, while the bottom row presents the reconstruction from a different perspective. Higher ¢ values lead to
better alignment with the observation but deviate from the prior, resulting in less cloud-like formations. In contrast, smaller ¢ values remain

closer to the cloudy prior but exhibit weaker alignment with the observation.

Algorithm 2 Parameterized DPS

Require:
Y, Rv D7 ¢
Ok, k > Start noisy version
Ensure:
0~ p(0|y;¢)
fort=Fk...1do
€+ €p (6, 1)
fo < (00 — VT —one) //au
z ~ N(0,I)
. > DDIM step
i1 100+ /1 — oy — ofe+ oy
> DPS step

01 0;_1 — (Vo ly — R(D(60). 6)13
return éo

8.1. Influence of ¢ in DPS

During diffusion posterior sampling, the gradients’ scaling
factor that guides the state toward the observation plays
a crucial role in balancing the trade-off between prior en-

forcement and observation fidelity. The authors of [9] pro-
posed the following formulation:

_ ¢
ly — A(@o(we))|l’

where the hyperparameter ¢ is chosen within the range
[0.1,1.0]. Figure 13 illustrates how this choice impacts re-
construction accuracy and adherence to the prior.

@

9. Common diffusion-base tasks

In this section, we present several applications of our pro-
posed generative model and the parameterized diffusion
posterior sampling technique, demonstrating their effective-
ness across a variety of tasks. These applications highlight
the versatility and power of our approach in addressing dif-
ferent challenges within the domain of volumetric scene re-
construction and rendering.

9.1. Generative model

One notable property of our proposed DDPM is its ability
to generate new clouds. The generated clouds look similar
to the original clouds in Cloudy, and their internal struc-
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Figure 14. Cloud Interpolation. Top row: linear interpolation between grids, showing a straightforward blending of two cloud structures.
Middle row: Linear interpolation between latent representations, offering smoother transitions compared to direct grid interpolation, but
still revealing limitations such as ghosting effects. Bottom row: DPS (Diffusion Posterior Sampling) using the linear interpolation in latent
space as the target, resulting in more coherent and natural transitions, with the prior enforced to avoid artifacts like ghosting.

ture closely resembles that of a physical simulation. This is
demonstrated in Fig. 4 in the main document.

Interpolation: Interestingly, linear interpolation in the
cloud’s latent space—i.e., between different latent repre-
sentations—produces plausible transitions between cloud
shapes. However, when the cloud distributions differ signif-
icantly in terms of lobes or fine elongations, ghosting effects
may occur as structures fade out linearly.

To address this issue, we propose an interpolation
method based on posterior sampling: The mixture in the
latent representation serves as the target, defined as y :=
(1 — «)b, + aby, where 6, and 0, are the latent represen-
tations of two different clouds, and « controls the blending
factor. This method ensures smoother transitions by tak-
ing the cloud structure into account during the interpolation
process, and enforcing the prior to prevent the appearance
of ghost artifacts. By integrating posterior sampling, the
model adapts to the natural distribution of clouds, resulting
in more physically consistent transitions.

Figure 14 showcases the differences between the linear
interpolation strategy and our proposed method, highlight-
ing the improved transitions and the reduction of ghosting
effects in complex cloud distributions.

9.2. Super-resolution and In-painting

Super-resolution and in-painting are common use cases in
image restoration with diffusion models. These tasks are
particularly well-suited for diffusers because the denoiser
can easily preserve parts of the existing signal while fill-
ing in missing or low-resolution regions with consistent and
coherent information. The diffusion process naturally inte-
grates prior knowledge, making it effective at reconstruct-
ing fine details and completing structures in a visually plau-
sible manner.

For the case of super-resolution, our measurement func-
tion is A(6) := C(D(0)), where C is a coarse jittered sam-
pling of the decoded grid D. In the case of in-painting,
we assume a mask of interest M and consider A(f) :=
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Figure 15. Cloud Inpainting. The diffuser is employed to generate
a cloud that is consistent with a visible portion of the cloud. Three
different instances are generated and displayed, demonstrating the

model’s ability to generalize and create diverse cloud formations,
each unique yet adhering to the visible parts provided.

M @ D(6).

Figures 7 and 15 demonstrate the performance of our dif-
fuser on super-resolution and in-painting tasks respectively.
While these tasks are typically linear in explicit cases, we
continue to use Diffusion Posterior Sampling (DPS) due to
the non-linearity of our latent decoder. This non-linearity
complicates the optimization, and therefore approaching the
solution at x; to satisfy y = A(zo(z:)) requires careful
computation of the gradients with respect to ;.

10. Extended comparisons

Fig. 16 shows visual examples from the 32 test cases.
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Figure 16. Further comparisons between different reconstruction techniques for single- and sparse-view settings.



