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1. Spectra coverage in the weakly scattering
case

We start our derivation by considering a weakly scattering
volume, expanding the analysis in Sec. 4 of the main paper.
Our goal is to understand how the reconstruction error is
scaled as a function of the number of fitted layers.

As derived in the main paper under a weakly scatter-
ing (first-Born) approximation the Fourier representation of
the Transmission matrix corresponds to an entry from the
Fourier transform of the RI volume. The wavefront scatter-
ing toward direction ω̄v when illuminated by an incoming
plane wave at direction ω̄i is proportional, up to a multi-
plicative factor, to [5, 6, 8]:

∝
∫

n(r)e2πi(κ̄i−κ̄v)·rdr, (1)

with κ̄v = 1/λω̄v , κ̄i = 1/λω̄i.
As derived in the main paper, since only a subset of fre-

quencies inside a butterfly shape can be measured, for an
exact, error-free reconstruction, the minimal Fourier range
and primal spacing are

Λ∗ = NAΩf , ∆z
∗ =

1

NAΩf
=

λ

NA2 . (2)

For a scattering volume of thickness d, the number of re-
quired layers is:

M∗ =
d · NA2

λ
. (3)

In a physical wavefront shaping system we want to ap-
proximate the volume with a sparse set of slices, below this
optimal bound. Our goal here is to analyze how much er-
ror is introduced by such sparse approximations. For that,
consider a scattering sample of thickness d, which we try to
approximate using M < M∗ layers separated by ∆z = d

M .
We denote by EM the reconstruction error of a given trans-
mission matrix with the best M layers

EM = min
ρ1,...,ρM

∥T exact − T (ρ1, . . . ,ρM )∥2. (4)

Our goal is to show that EM decays relatively fast with
M and we can get a reasonable approximation to the trans-
mission matrix even if the number of layers is significantly
lower than the exact prediction in Eq. (3). This is a result
of two main properties: (i) The volumes describing realis-
tic tissue samples have more energy in the low frequencies;
and (ii) the structure of the missing cone implies that, in any

case, a significant portion of the spectrum is not sampled by
the transmission matrix.

To understand this, consider a naive selection of M lay-
ers ρ1, . . . ,ρM . Rather than actually solving an optimiza-
tion problem, we use the ground truth volume n̂(κ), and
simply set to zero any frequency content of the RI volume
n̂(κ) at κz values larger than the possible Nyquist range

ΛM =
1

∆z
=

λM

d
, (5)

and we then Fourier transform n̂(κ) to n(r) and sample
planes at spacing ∆z = d/M . The error of this approxi-
mation is basically the integral of content above the cut-off
ΛM . Since according to Eq. (5), the cut-off frequency ΛM

scales linearly with the number of layers, the portion of the
spectrum which is lost by this low-pass operation scales lin-
early with the number of layers M . Thus, the naive answer
is that the error of a multi-slice approximation decays lin-
early with M . In practice we show below that the error
decays much faster, since large areas from the 3D spectrum
of the sample are not used by the transmission matrix.

To gain intuition, consider Fig. 1(b). We note that the
butterfly shape is such that low 2D frequencies (i.e. low
|κxy|), also span less content along the κz axes, and hence
these frequencies are not lost even with low bandwidths
ΛM . For the higher |κxy| frequencies, the lower κz part,
marked in dashed blue in Fig. 1(b) is preserved, while the
higher portion marked in red is lost.

Another important property of tissue is that its RI is lo-
cally smooth, and therefore if we look at its spectrum, we
have much more energy in low frequencies than in high
ones. Therefore, in the red areas of Fig. 1(b) that are not
sampled by the transmission matrix, there is less energy
than in the lower frequencies. Thus, despite the fact that
the multi-slice approximation sacrifices such frequencies,
not much energy is being lost.

In most cases, it is hard to give analytic formulas for the
decay of EM as a function of M . We can derive an ana-
lytic prediction in a simplified model where we assume that
the spectrum of n̂(κ) has random values that are sampled
from a uniform distribution for any frequency below a cut-
off Ωn (i.e. any frequency satisfying ∥κ∥ ≤ Ωn), and zero
content outside this band. Under this model we can prove
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Figure 1. Spectrum structure: (a) An xz slice out of the spectrum of
n̂(ω). Entries of a weakly-scattering transmission matrix limited by an
aperture NA only lie inside the butterfly area. (b) Zooming on the center
right area of (a) (purple square). Assuming the ωz axis is cut at ± 1

2
ΛM ,

the transmission matrix entries inside the dashed blue area are maintained,
and the entries in the dashed red area are lost.

that EM decays at least quadratically fast with M . This is
a non-trivial result since the cut-off frequency ΛM scales
only linearly with M , see Eq. (5). Thus, if we just rely
on Nyquist theory and compute the energy of the spectrum
above the cut-off frequency, we expect the error to decay
linearly with M . The fact that the error decays quadrati-
cally with M results from the butterfly structure. However,
we emphasize that this result uses the over-simplified as-
sumption of a uniform content in n̂(κ). In the numerical
simulation we see that this result is over-pessimistic, and
with more realistic forward scattering volumes, the decay
of EM is significantly faster than a quadratic function.

Claim 1 The reconstruction error of a transmission matrix
corresponding to a weakly scattering volume with a uniform
spectrum, is bounded by

EM ≤
(
M∗ −M

M∗

)2

E0, (6)

where E0 is our ability to approximate a transmission ma-
trix with no correction, namely with the ballistic light alone.

We start with a numerical evaluation of this claim and then
proceed to the proof.
Numerical validation: To test the decay of the multi-slice
fitting error as a function of the number of layers M , we
generated synthetic transmission matrices. We used two
types of RI volumes, in the first case we selected random
values for the spectrum n̂(κ), for any frequency ∥κ∥ ≤
Ωn, using a band Ωn = 0.3/λ. The second type of RI vol-
ume n(r) is filled with a set of spheres at random positions,
and each sphere has a random RI different than that of the
leading medium. This is a more realistic approximation to
the structure of real tissue where we have cells with a cer-
tain RI embedded in a surrounding medium with a different
RI. In Fig. 2(a) we show a slice through the two spectra
n̂(κ) we receive. With the random spheres the spectrum
decays more naturally, and we have much more content at

low frequencies than at high ones. This is a more realistic
approximation to the spectrum of real tissue since the fact
that tissue is forward scattering implies that its spectrum
should have more content at lower frequencies.

We synthesized a target T exact matrix using a multi-slice
model where the planes are sampled very densely. We gen-
erated a set of sparse multi-slice approximations with in-
creasing M values in two ways. First, we use gradient de-
scent optimization to minimize the fitting error in Eq. (4).
Second, we use a naive filtering of the ground truth volume,
where we simply set to zero any frequency content at κz val-
ues larger than the possible Nyquist range ΛM = M

d . We
start with a low optical depth, and in Fig. 2(b) we plot the
square root of the reconstruction error as a function of M .
One can see that with a uniform spectrum, the square root
of the error indeed decays linearly with M , suggesting that
the actual reconstruction error decays quadratically with M .
The curves reach a plateau when M exceeds the Nyquist re-
quirements. This validates the prediction of Claim 1. How-
ever, with the more realistic forward scattering volume, the
decay of the fitting error is significantly faster than the an-
alytic quadratic prediction. For both types of volumes the
optimization provides better fits with low M values, but for
high M values it runs into local minima, and the fitting er-
ror it achieves can be higher than the one achieved by naive
filtering.

In our plots, the case M = 0 refers to no correction at
all, so effectively we assume that the transmission matrix is
diagonal. The similarity between a diagonal transmission
matrix and the target transmission matrix is a measure of
the amount of ballistic light.

1.1. Deriving the multi-slice fitting error
Below we proof Claim 1.
Proof: To prove this result we use a brute-force selection of
the layers ρ1, . . . ,ρM . We simply set to zero any frequency
content of the refractive volume n̂(κ) at |κz| values larger
than the possible Nyquist range

ΛM =
1

∆z
=

λM

d
, (7)

and we then Fourier transform n̂(κ) to n and sample planes
at spacing ∆z . In the following paragraphs we offer an
upper-bound calculation of the number of transmission ma-
trix entries that lie outside the band ΛM and are hence lost
by the low-pass operation. We show this scales quadrati-
cally with M .

To perform this calculation we consider Fig. 3. We note
that the butterfly shape is such that low 2D frequencies (i.e.
low |κxy| ) also span less content in the κz axes, and hence
these frequencies are not lost even with low bandwidths Λ.
For the higher |κxy| frequencies, the lower κz part marked
in blue is preserved, while the higher portion marked in red
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Figure 2. Numerical simulation: We synthesize transmission matrices using a very dense multi-layer model, and test how well we can fit them with a
sparser set of layers. We compare two types of volumes, whose spectra are illustrated in (a). The first one has a random spectrum sampled from a uniform
distribution, and the second corresponds to a forward scattering spectrum with more content at the low frequencies. We plot the square root of the fitting
error as a function of the number of layers. As predicted in claim 1, with a uniform spectrum this decays linearly with the number of layers until we pass
the Nyquist limit. The error with the more realistic forward scattering spectrum decays much faster, but analytic characterization is harder. We compute
the layers using a naive filtering of the ground truth as well as using gradient descent optimization. The naive filtering provides good results at low optical
depths, as illustrated in (b), but fails at higher ODs as illustrated in (c).

in Fig. 3(b) is lost. Below we preform a conservative calcu-
lation of how many transmission matrix entries are included
in the red area, and show that this number is bounded by a
quadratic function of (M∗ − M). Using the assumption
that the frequency content of the volume is smaller than the
cut-off frequency set by the numerical aperture (Ωn < Ωf )
we can approximate the butterfly boundaries at areas where
the volume has content as linear curves:

|κz| ≤ NA|κxy|. (8)

Also, if Ωn < Ωf the maximal κz frequency at which we
observe content does not get to NAΩf/2 as derived in Eq.
8 of the main paper, but can be actually reduced to NAΩn.
Thus, for error-free reconstruction it is enough to maintain
content up to a cut-off frequency of

1

2
Λ∗ = NAΩn, (9)

and as a result the minimal number of required layers is

M∗ = 2NAΩnd (10)

With this model we treat the red area as a triangle, and we
denote the frequency at which the triangle intersects with
the z-axis bandwidth as κM , it can be shown that

κM =
ΛM

2λNA
=

M

2NAd
. (11)

To compute the number of transmission matrix entries in the
red region, we need to compute an integral of the following
form ∫ Ωn

κ=κM

NA(κ− κM ) · (2πκ) · f(κ)dκ. (12)

The first term in this integral is the distance of the triangle
from the cutoff frequency (the triangle at frequency |κxy| =
κ spans κz values in a range from NAκM to NAκ ), the 2nd

term encodes the fact that in the 3D Fourier domain there is
a full circle of frequencies with norm |κxy| = κ. Finally the
function f(κ) encodes the density of transmission matrix
entries which are mapped to frequency κ = (κx, κy, κz).
Below we show this is bounded by

f(κ) ≤ c

|κxy|
(13)

where c is a constant scalar. With this we can bound the
volume of missing frequencies as∫ Ωn

κ=κM

NA(κ− κM ) · (2π) · cdκ = NAπc
(
Ωn − κM

)2
(14)

By plugging Ωn from Eq. (10), and the value for κM as
in Eq. (11) we get that the density of transmission matrix
entries in the filtered red volume is proportional to∫ 1

2Ωn

ω=ωM

NA(ω − ωM ) · (2π) · cdω ∝ (M∗ −M)2. (15)

Using the same reasoning when we have M = 0 layers the
error in reconstructing the transmission matrix, namely the
full volume of the butterfly shape is proportional (M∗)2.
This leads us to the desired Eq. (6).

The last thing we need to prove is that the density of
transmission matrix entries around the 3D frequency κ =
(κx, κy, κz) is bounded by

f(κ) ≤ c

|κxy|
(16)

For that we recall that we sample a frequency κ when we
have illumination and viewing directions whose frequencies
satisfy κ̄i − κ̄v = κ, where κ̄i = 1/λω̄i, κ̄v = 1/λω̄v , so
κ̄i, κ̄v are vectors of norm 1/λ. For that consider illumina-
tion and viewing directions which we parameterize using a
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Figure 3. Spectrum structure: (a) an x − z slice out of the spectrum of n̂(ω). Entries of the transmission matrix limited by an aperture NA only lie
inside the butterfly area. We also assume the content of n̂(ω) is limited to a bend of support Ωn marked in gray in the figure. (b) zooming on the center
right area of (a) (purple rectangle), assuming the ωz axis is cut at ± 1

2
Λ, the transmission matrix entries inside the dashed blue area are maintained, and the

entries in the dashed red area are lost. The approximation error with M layers is proportional to the red volume, which is shown to scale quadratically with
M . (c) The x− y projection of the maintained/lost areas.

2nd order approximation as

κ̄i =

 τx + κx

τy + κy
1
λ − λ

2 ((τx + κx)
2 + (τy + κy)

2)

 (17)

ωv =

 τx
τy

1
λ − λ

2 (τ
2
x + τ2y )

 (18)

The difference between these two vectors in the first two
coordinates is κx, κy . The difference in the 3rd coordinate
can be expressed as

κz = λ(τxκx + τyκy)−
λ

2
|κxy|2

= λ((τx, τy) · (s1|κxy|))−
λ

2
|κxy|2

(19)

where in the right hand side of the above equation we use
the 2D unit norm vector s1 = (κx, κy)/|κxy|. With this no-
tation we see that to get the 3D frequency κz we need to use
viewing directions whose τx, τy satisfy the linear constraint

((τx, τy) · s1) =
1

|κxy|

(
κz +

1

2
|κxy|2

)
. (20)

The density of directions satisfying this constraint scales as
1/|κxy|.

2. Spectra coverage under multiple scattering
The analytical analysis in the main paper has assumed the
sample is weekly scattering. While it is hard to give ana-
lytical results in the case of multiple scattering, it appears
that when the optical depth of the tissue is moderate, light

paths undergo a small number of scattering events without
being completely scrambled, and the same results hold. The
reason is that, since tissue is forward-scattering, light only
scatters at small angles. Therefore, after a small number
of scattering events, most light paths remain within the but-
terfly area of the spectrum. This is usually the regime that
wavefront-shaping algorithms like [1, 2] attempt to tackle
as such algorithms attempt to push the depth at which con-
ventional microscopes can see, but they do not yet attempt
to image extremely deep where scattering is fully diffused.

To illustrate this, we carry a Monte-Carlo path tracing
through a volume. We consider light paths of the form
r⃗ = r0, r1, . . . , rℓ, and denote the direction of the ray be-
tween points rk, rk−1 by ω̄k. That is, when a light path
scatters at a point rk it is changing its direction from ω̄k

to ω̄k+1, see illustration in Fig. 4(a). This is equivalent to
sampling the 3D frequency κ = 1/λ(ω̄k+1 − ω̄k). Our
Monte-Carlo simulation samples the first direction on the
path anywhere inside the numerical aperture of the expected
illumination objective. We sample paths according to a tar-
get phase function and optical density but discard all paths
that eventually exit the volume at directions outside the nu-
merical aperture as such paths cannot be collected by the
imaging objective. However, the inner nodes on the path
can include scattering at large angles beyond the NA. Af-
ter tracing multiple paths through the volume we compute
a histogram of the traced 3D frequencies and we visualize
a κx, κz slice through it. In Fig. 4(b-d) we plot a few such
histograms. We start by setting the optical depth of the vol-
ume to OD = 0.5 (Fig. 4(b)), in this case most paths scat-
ter only once and indeed most of the histogram content is
inside the butterfly shape of Fig. 3(a). There is some con-
tent outside this ellipse since a few of the paths we traced
are longer. In Fig. 4(c) we repeated a similar simulation
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Figure 4. 3D frequencies of MC paths: (a) An illustration of a Monte-Carlo path in the volume. (b-d) We plot a histogram of the 3D frequencies traced
by such paths. (b) A weakly scattering volume of OD = 0.5 with an isotropic phase function, shows most frequencies lie inside a narrow butterfly area. (c)
When OD is increased to 5 multiple scattering paths generate content at other frequencies. (d) Even at high optical depths, if the phase function is forward
scattering as in tissue, most content is at the low frequencies.

increasing to OD = 5, meaning that the average number
of scattering events on a path is 5. Such longer paths turn
in a variety of directions, and we get content over the en-
tire 3D spectrum. In Fig. 4(b,c) we have assumed that the
light is scattering isotropically (Henyey-Greenstein param-
eter g = 0). In Fig. 4(d) we repeated the experiments with
OD = 5 but used a forward scattering phase function which
better describes tissue, with a Henyey-Greenstein parame-
ter g = 0.9. Unsurprisingly, most of the paths traced con-
tribute to low frequencies, and even though paths are long,
most content is inside the butterfly and not in the area of
the missing cone. This observation has a significant impact
on the analysis of layered approximations: even if they can
only capture the low frequencies of the refractive volume,
they can still provide a good approximation to the transmis-
sion matrix.

2.1. Path tracing with compact support
Due to the large memory requirements of 4D transmission
matrices, they are usually only sampled inside a bounded
range. That is, we only move illumination point sources
inside a small area of size Ωp×Ωp, and measure a bounded
set of columns.

When fitting layers, we need to account for the fact that
a point/plane illumination scattering through a volume is
expanding. Thus, the aberration layers required to explain
the transmission matrix are wider than the imaged area of
size Ωp × Ωp, see Fig. 5(a). Such compact support trans-
mission matrices can be fitted with a sparser set of layers.
To see this we consider Fig. 5(b). Expressing a transmis-
sion matrix with a compact support at the frequency basis
is equivalent to illuminating the sample with plane waves
spanning a wide set of angles, but all the waves pass through
a narrow aperture of size Ωp×Ωp. In this case most points

inside the volume usually do not receive light from all an-
gles. In Fig. 5(c) we plot the narrow cone of angles arriving
at three different points (a ray leaving a point pj at direction
ω̄ is included in the cone only if this ray is not cropped by
the aperture at the back of the sample). Since the cone of
light reaching each point is narrower than the full numerical
aperture, a local Fourier transform would not have content
over the full butterfly area, but cover an even lower range of
axial ωz frequencies. Hence, following the analysis in the
previous section, it can be sampled with fewer layers.

To illustrate this, we use again Monte-Carlo path tracing.
In Fig. 5(d) we plot the histogram of frequencies visited by
a M.C. process, but we only record the paths that passed in
three local regions marked in Fig. 5(c). Comparing these
histograms to the histogram of paths in the entire volume,
we see that the local histograms have a much narrower axial
range.

As another way to understand it, we show in Fig. 4 of
the main paper an xz slice from the ground truth RI volume
and from a few reconstructions. We first optimized for a
layer fitting with a dense sampling (high layer number M ).
Even in this case, the axial resolution of the reconstruction
is poor, and the axial resolution reduces when the support
Ωp is low. This explains why lower supports can be fitted
with fewer layers. For each of the two supports we also
show a sparse fit, with the minimal M value that provides a
good prediction of the transmission matrix.

3. Empirical evaluation of multi-slice approxi-
mations

In this section we consider a few transmission matrices
and check empirically how well we can approximate them
with a multi-slice model. We start with numerically sim-
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Figure 5. Layer support: (a) as point source expand while propagating through the volume the width of the aberration layers should be wider than the
support Ωp over which the transmission matrix is measured. (b) To express compact support transmission matrices in the Fourier basis, we illuminate the
volume by a set of plane waves passing through an aperture. Such waves also expand through the volume to an area wider then the aperture. (c) The local
cone of illumination angles reaching different points inside the volume is much smaller than the actual range of incoming illuminations. (d) Since locally
each point receives light through a limited angular cone, the local Fourier transform has a lower axial range. To show this we plot the full histogram of
angles scanned by Monte-Carlo paths (this is a zoom of the histograms in Fig. 4). We also plot only the histogram of paths passing through the 3 points
marked in (c). One can see that such local path-histograms have a limited axial spread. Due to this limited range they can be explained with fewer layers.
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Figure 6. Fitting transmission matrix: We fit a few types of transmission matrices with multi-slice model. The top panel tested physically accurate
transmission matrices simulated with the Monte-Carlo approach of [4] at two optical depths. Lower panels used a transmission matrices measured in the
lab through layers of parafilm and mouse brain. (a) The reduction in fitting error as a function of the number of layers. (b) The averaged delivered energy
(correlation between captured and fitted matrices). (c) An example of a spot behind the tissue using the wavefront estimated by the layered model, with
different number of layers. (for the M.C. matrices we only show focusing at OD = 5).
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Figure 7. Layer support for a captured transmission matrix: We consider a transmission matrix captured in the lab through a chicken breast layer of
thickness 170µm. Left: plotting the fitting error as a function of the number of layers. Smaller supports can be fitted with fewer layers. Right: visualization
of a spot focusing behind the tissue, computed using the wavefronts of the fitted model. We compare models fitted to different supports. In the top row we
need a larger number of layers, but the spot can be scanned over a 25× 25µm window using the same layers. In the lower rows we achieve a focused spot
using a smaller number of layers, but these layers can scan the focused spot over smaller windows of sizes 6× 6µm and 1× 1µm.

ulated transmission matrices using a more accurate wave-
propagation model. We then test lab-captured transmission
matrices measuring realistic scattering samples, including
thick multiple scattering examples.

While the analysis used the Fourier representation of the
transmission matrix, our simulations and measurements use
transmission matrices expressed in the primal domain, since
in practice, wavefront shaping algorithms use primal mea-
surements.

3.1. Monte-Carlo transmission matrices

The transmission matrices used in the simulations of the
previous sections were generated using multi-slice models
with very dense slices. The multi-slice model is only an ap-
proximation to the full wave-equation because it does not
simulate back-scattering paths. To test the discrepancy be-
tween this model and the full wave equation, we used the
Monte-Carlo algorithm of [3, 4] to synthesize transmission
matrices. It has been shown that this algorithm generates
complex fields with physically correct statistics which are
equivalent to an exact solution to the wave equation, yet it
is much faster to compute and scales to much larger scenes.
In particular, the M.C. algorithm simulates scattering from
particles at any point in the volume (not only on sparse
slices) and at all angles (including back-scattering). We
simulated a volume of thickness d = 50µm at λ = 0.5µm
and illuminated it with point sources spaced over an area
of Ωp = 18µm. We measured the scattered fields over a
wider support of 30× 30µm. We used a forward scattering
phase function as is common in real tissue. We simulated
volumes with two different optical depths and fitted them
with a multi-slice model, while increasing the number of
layers. The fit results are plotted in Fig. 6(top). The lay-
ered transmission matrices have ×7 lower fitting error when
compared to the ballistic term alone which is equivalent to

fitting with zero layers. However, even when the number
of layers increases and approaches the Nyquist limit, the
fitting error does not decrease to zero. This failure is a com-
bination of two issues. First, the fact that the actual trans-
mission matrix includes scattering at wide angles which are
not modeled by the layered approximation, and second, the
fact that the optimization problem is not convex, and the
gradient descent does not converge to a global optimum.

As another way to understand the quality of the fit, we
tested the correlation between columns of the exact and fit-
ted transmission matrices and measured

CM =
1

K

∑
k

∣∣∣∣∣ tkexact
T · tkfit,M

∥tkexact∥ · ∥tkfit,M∥

∣∣∣∣∣
2

(21)

where tkexact, t
k
fit,M are columns from the input and fitted

transmission matrices. This provides a prediction of the per-
centage of energy we can deliver to a point behind the tis-
sue if we use tkfit,M as a wavefront shaping correction, rather
than the exact tkexact (note that this only evaluates the energy
with respect to the modes included in the input transmission
matrix, but there may be additional correction modes not
captured by the transmission matrix. Namely, if we would
measure a transmission matrix over a wider Ωp support we
could focus more light to a point). With sufficient M values
we can deliver more than 80% of the energy, as plotted in
the top row of Fig. 6(b). In Fig. 6(c) we also show some
examples of the spot behind the tissue if we use tkfit,M as
a wavefront shaping correction. For M ≥ 5 layers the fit
is good enough to provide a sharp spot. Note that while
we only show focusing at one point, the layers are opti-
mized such that they allow us to focus at any point inside
the Ωp ×Ωp = 18× 18µm window.



3.2. Acquired transmission matrices

We used the Hadamard algorithm of [7] to capture trans-
mission matrices of real samples in the lab. We mea-
sured a layer of parafilm, and two slices of mouse brain
and chicken-breast tissue. We measured the parafilm layer
to be of thickness d = 46µm, the mice brain to have
thickness 400µm and the chicken breast to be of thickness
d = 170µm. The transmission matrices cover an area of
Ωp = 25µm. The measurement is very noisy, mostly due
to vibrations during the long capture. Due to the noisy ac-
quisition the fit is not as good as in the synthetic case, but
the fitted wavefronts can still focus more than 50% of the
energy and generate sharp spots behind the tissue. We show
the fits for the parafilm and brain samples in the two lower
panels of Fig. 6. We also show the spot we can get behind
the tissue using the approximated transmission matrix. Note
that these wavefronts are computed numerically, by multi-
plying the approximated wavefront by the captured trans-
mission matrix.

In Fig. 7 we show fits on the chicken breast matrix. Here
we tested the quality of the fit as a function of ranges Ωp.
For that, the algorithm attempts to fit a subset of the mea-
sured columns, limited into smaller spatial ranges Ωp. As
in Fig. 6 of the main paper, we see that smaller spatial
ranges can be fitted with fewer layers, since if the transmis-
sion matrix only covers a limited spatial support, the range
of illumination angles reaching each point in the volume
is effectively very narrow, hence locally, the Fourier trans-
form has a limited axial range. From the results in Fig. 7
we can see that for the 25 × 25µm support we measured
we can obtain good focusing with about 3 − 4 layers. Fit-
ting a full field-of-view of several hundred microns likely
requires additional layers. However, we observe that while
using M = 1 allows us to focus on a small area of about
2 × 2µm, with M = 2 focus is expanded to a ×9 larger
area of 6× 6µm, and with M = 3, we can focus on an area
×150 larger, reaching 25×25µm. Therefore, using multiple
layers can significantly accelerates a sequential scanning of
a wide field-of-view.

Mice brain samples used in this manuscript were ap-
proved by Institutional Animal Care and Use Committee
(IACUC) at the Hebrew University of Jerusalem (MD-20-
16065-4).

4. Volume synthesis

To sample the 3D volumes used to simulate multi-layer
transmission matrices we sampled spheres at random posi-
tions. We sampled the spheres so that the resulting volume
would have a target optical depth OD . To this end we had to
select two parameters, the sphere density, and the variation
in refractive index induced by the sphere.

The sphere radii were uniformly sampled in the range

0.5− 1.5µm (so diameters in the range 1− 3µm) with illu-
mination wavelength λ = 0.5µm. We note that a sphere
with radii ς has a 2D cross section area of πς2. There-
fore given a target optical depth OD the average number
of spheres in a volume of size W ×W × d should be

OD
W 2∫

p(ς)πς2dς
(22)

where p(ς) is the probability of sampling a sphere with radii
ς .

Each sampled sphere is assigned a uniform refractive in-
dex n, which differs from the refractive index of the leading
medium by a random value in the range

[−α, α]. (23)

We select α so that the resulting volume meets the target
optical depth as explained next. To that end we note that
the phase masks ρm of the multi-slice model in Eq. 2 of
the main paper are equivalent to the integral of refractive
indices variation in a slice of thickness ∆z around it. As
the refractive index variation has a low magnitude we can
approximate the phase mask as

ρm(x, y) = e
2πi
λ n(x,y) ≈ 1−

(
2πn(x, y)

λ

)2

+ i
2πn(x, y)

λ
(24)

We approximate ρm as

ρm(x, y) = µ+ δρm(x, y) (25)

such that µ is the mean of ρ (which is a real positive scalar)
and δρm(x, y) is a zero mean residual. We note that the
mean µ is effected by the range of refractive indices α in
Eq. (23). On the other hand we note that light propagating
through M aberration layers maintains a ballistic compo-
nent attenuated by µM . To meet a target optical depth we
want µM = e−OD . We therefore numerically scan multiple
values of α and select the one providing the desired optical
depth.
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