3D-HGS: 3D Half-Gaussian Splatting

Supplementary Material

A. Detailed Derivations
A.l. 3D Half-Gaussian Kernel

In this section, we give a more detailed derivation for Eq. 8,
and Eq. 9. We start with the density function of a 3D Half-
Gaussian with covariance matrix X:

1, Ts—1
—3X XX IITXZO

12
nTx <0 (12)

HGx(x) = { 8

To compute the integral of the non-zero Half Gaussian
along the z direction, fnTx>O HGx(x)dz, we start by cal-
culating the conditional distribution of z, given z and y and
the marginal distribution of z and y:

1 - Mzlx 2
f(z|z,y) = exp (—5 (—ZU M| | y)) (13)
zz|lxy

fla,y) = exp <—% [z y] 25} m) (14)

where (i, and o, ,, are the mean and variance of the
conditional distribution, respectively. >, is defined as the
top left 2 x 2 covariance submatrix of 3:

E(IJ(E Z(IJZ
E n |:EZE O-ZZ:| (15)

and o is the variance for 2. Then p),,, and 0/, can be
expressed as:

_ X
JTRTED Y Sy M (16)

O-zz\;ny =0zz — Ezmz};mlzzz (17)

Then, the integral of the 3D Half-Gaussian can be computed
as:

o0

/ HGx(x)dz = f(x,y)/ f(z|z,y)dz
nTx>0 Ly

1 1|z
= exp (—5 [:c y] ZMI {y])
o0 1 z — ,U 2
/ exp | —= <—'W> dz (18)
_niztnoy 2 O’ZZ|Iy
n3

where exp (—% [z y] X4 [Z

We apply the substitution u = %‘ﬂ, then we get:

Czzlzy

}) is the same as G's, (X — f1).

/ HGx(x)dz
JnTx>0

~ . . © w2
=Gg(x— /L)ﬁn]z;nzy_uz‘zy e “du (19)
Ve

O az|zy

The final result of the integral of the 3D Half-Gaussian
is:

/ HGx(x)dz
nTx>0

() fa + 22522) [1]

(o - T

(20)

A.2. Fourier transform of 1D Half-Gaussian

In this section, we present a detailed derivation of the
Fourier transform for the 1D Half-Gaussian, which was uti-
lized to generate Fig. 2d. We begin with the definition of
the half-Gaussian:

22
e 202 x>0
T) = ’ - 21
i) {O, <0

The following provides the derivation of its Fourier
transform:

g(k) = / HG(z)e *dx (22)
— 00
[ele] 22)
:/ e 22 e hT g (23)
0
- / e202 (@ +2i0%ke) g, (24)
0

_ /Oo o (@tio®k)>>=(i0*h)%) 4, 25)
0

=e” = /OO e~ 3oz (@+iok)? g (26)
0

Now we apply the substitution v = z + io?k, where
du = dzx. Under this substitution, the integration limits
transform. The integral becomes:

o2k2 > u?
glk)=¢e" 2 / e 22du (27
i

o2k

Table 4. Quantitative comparison to previous methods on standard benchmarks. Competing metrics are directly taken from the
respective papers for consistency.

3DGS 3DHGS Scaffold-HGS 3DHGS-Mip-Splatting ~ 3DHGS-MCMC
PSNR1/SSIMT/LPIPS | PSNRT/SSIMT/LPIPS | PSNRT/SSIM1T/LPIPS | PSNR1/SSIMT/LPIPS | PSNRT/SSIMT/LPIPS |
Counter 28.70/0.905/0.204 29.84/0.920/0.177 29.52/0.914/0.183 30.11/0.925/0.166 30.24/0.928/0.161
o Stump 26.56/0.770/0.217 26.64/0.760/0.242 26.45/0.76/0.259 26.94/0.777/0.215 27.17/0.794/0.202
< Kitchen 30.80/0.927/0.127 32.22/0.936/0.113 31.67/0.931/0.113 32.56/0.938/0.108 32.72/0.940/0.108
é Bicycle 25.21/0.765/0.209 25.25/0.750/0.230 25.05/0.74/0.258 25.43/0.773/0.189 25.52/0.777/0.196
;zl; Bonsai 32.20/0.946/0.183 33.52/0.950/0.180 32.75/0.947/0.176 33.55/0.952/0.161 34.33/0.958/0.159
S Room 31.40/0.918/0.223 32.52/0.931/0.193 32.21/0.929/0.184 32.80/0.937/0.175 33.25/0.940/0.169
Garden 27.30/0.865/0.107 27.50/0.860/0.110 27.12/0.848/0.130 27.80/0.865/0.106 27.67/0.864/0.110
Average 28.88/0.870/0.182 29.66/0.873/0.178 29.25/0.867/0.186 29.88/0.881/0.160 30.13/0.886/0.158
Flowers 21.52/0.605/0.336 21.55/0.610/0.250 / / /
Treehill 22.49/0.638/0.317 22.63/0.640/0.330 / / /
] Train 21.91/0.815/0.210 22.65/0.826/0.193 22.63/0.828/0.186 22.65/0.836/0.176 23.24/0.841/0.180
:%é Truck 25.30/0.88/0.152 26.25/0.887/0.138 26.17/0.889/0.138 26.42/0.894/0.115 26.91/0.902/0.107
< Average 23.60/0.847/0.181 24.45/0.857/0.169 24.42/0.859/0.162 24.53/0.865/0.145 25.08/0.841/0.144
.2 Drlohnson 29.02/0.902/0.244 29.30/0.903/0.240 29.82/0.908/0.236 29.18/0.901/0.241 29.02/0.890/0.26
EE Playroom 29.81/0.904/0.242 30.22/0.907/0.244 30.90/0.912/0.244 30.04/0.901/0.241 30.58/0.905/0.231
= Average 29.41/0.903/0.243 29.76/0.905/0.242 30.36/0.910/0.240 29.61/0.901/0.241 29.80/0.898/0.245

The remaining integral can be evaluated using the com-
plex error function erfi(z), resulting in the final expression:

(k) = e—”zz’“z\/g <a _ioerfi (%))

This provides the Fourier transform of the half-Gaussian
function.

(28)

B. Implementation Details

B.1. Splatting for Splitting Plane

For simplicity, we define the splitting plane as intersecting
the 3D ellipsoid at the three-sigma boundary of the original
Gaussian and oriented orthogonal to the normal direction.
To approximate the splitting plane, we use an external el-
lipsoid that circumscribes the original 3D ellipsoid, with a
significantly shortened third axis aligned parallel to the nor-
mal of the splitting plane.

During rendering, the precomputed 2D projection of the
splitting plane facilitates efficient determination of the in-
ner boundary of the Gaussian. Combined with the outer
boundary derived from the original Gaussian, this enables
accurate partitioning into two halves and precise identifica-
tion of the valid effect areas for each half-Gaussian. This
approach achieves rendering speeds that are comparable to
or even exceed those of standard Gaussian splatting.

Additionally, we provide a detailed procedure to com-
pute the covariance matrix for the smaller circumscribing
ellipsoid based on the covariance matrix of the original
Gaussian and the normal vector of the cutting plane in Al-
gorithm 1.

Algorithm 1 Covariance Matrix Transformation

32: The covariance matrix for the 3D gaussian

n: The normal for the cutting plane

32: the covariance for the ellipsoid include the cutting plane

Normalize the normal vector: n < n/||n||
if n, = 0 and ny = 0 then

Set vy = (1,0,0) and vy = (0, 1,0)
else

A28 (ny7 Nz, O)/”(nw N, O)”

Vg <— n X V1/||n X V1||
end if
basis < concatenate(vy, vo, 1)

cov « basis? - ¥ basis2
a' + cov|0,0] — <021

cov[2,2]
’ cov[0,2]cov([1,2]
V'« cov[0, 1] — =005
/ cov[1,2]cov[1,2]
¢ < cov[l,1] - == 52
a v 0
o« |V ¢ 0

0 0 min(a,)/100
o < basis - o - basis”

B.2. Training Settings

During training, we introduce a new parameter, the nor-
mal vector, and assign it a dedicated learning rate of 0.003.
Unlike original Gaussian Splatting, each Gaussian in our
framework has two opacities. The initial learning rates for
opacities are consistent with those used in Gaussian Splat-
ting. In 3D-HGS, the learning rates for both opacity and the
normal vector are progressively reduced by a factor of 1.4

every 5000 iterations.

To further improve training efficiency, we adjust the
thresholds for opacity during the densification and pruning
stages. Specifically, we increase the opacity threshold to
0.01 and reset the opacity value for half-Gaussians to 0.02.
These adjustments help to effectively eliminate dust and
noise from the scene, leading to cleaner and more accurate
representations.

C. Additional Experiments

C.1. Detailed Results

We evaluated the performance of 3D-HGS and other 3D
Gaussian architectures, including Scaffold, mip-splatting,
and MCMC, using our 3D half-Gaussian kernel and com-
pared to the original 3D Gaussian Splatting. Table | in
the main paper summarizes the average results derived from
Table 4. Our method consistently outperforms the original
3D Gaussian Splatting across all metrics. Each average re-
ported in Table 4 was computed across all scenes within the
dataset.

C.2. Splitting Plane Visualization

HGS splitting plane normal

Figure 10. Splitting Plane Visualization. The normals to the
splitting planes are parallel to the corresponding 3D surface nor-
mals. Please note that the tops of three of the drums are transpar-
ent.

In order to visualize the locations of the splitting planes,
we provide side by side the scene surface normals and the
splitting plane normals for the drums scene in Fig. 10. The
figure shows that the normals of the splitting planes gener-
ally align well with the normals of the scene surfaces, in-
dicating that the half ellipsoids effectively model the sharp
transitions between the object surfaces and the empty space.
This is also supported by Fig. 5 in the main paper, which
shows that a large number of Gaussians have one of their
halves transparent.

C.3. Training time vs PSNR

As shown in Fig. 11, for the same training time, 3DHGS
using a similar or smaller number of Gaussians achieves
better PSNR than using 3DGS.

V4
106

T —— PSNR (3D-GS)
!
—— PSNR (3D-HGS) 0.8

} ---- # of kernels (3D-GS) 0.6
24 ---- # of kernels (3D-HGS) | 4

0 500 1000 1500 2000
Training Time (s)

Figure 11. Training Time: Performance (PSNRT) and memory
(number of kernels|) versus training time for the Bonsai scene.
Numbers on the curves indicate number of iterations.

C.4. Rendering Speed Ablation Study

Table 5. Ablation study on Rendering Speed on a single RTX-
3090. A 3DGHS kernel consists of its two half-Gaussians.

Dataset # of Kernels 3DHGS FPS / PSNR

3DGS 3DHGS w/o Eff. Rasterizer with Eff. Rasterizer

Mip-NeRF 360 322M 288M 76/29.56 125/29.66
Tank & Template 1.81M 1.81 M 95/24.49 160/ 24.45
Deep Blending 3.00M 266 M 82/29.76 126 /29.76

We performed an ablation study on the proposed efficient
3D half-Gaussian Splatting Rasterizer (Sec.3.4). Table 5 re-
ports the rendering speed in FPS and the performance in
PSNR for our method, 3DHGS, with and without the effi-
cient Rasterizer. The results highlight a significant improve-
ment in rendering speed with our proposed Rasterizer. Ad-
ditionally, we provide the average number of kernels used
by 3DGS and 3DHGS for reference.

