A Unified Approach to Interpreting Self-supervised Pre-training Methods
for 3D Point Clouds via Interactions

Supplementary Material

7. Properties of interactions

As mentioned in Sec. 3, the interactions in this paper refer to
Harsanyi interaction, which is a standard metric to quantify
the AND relationship between input variables in a DNN.
In fact, the Harsanyi interaction I(.S) satisfies several desir-
able properties and axioms in game theory [17], making it a
robust choice for faithfully explaining the inference scores
of a DNN, as detailed below.

(1) Efficiency axiom. The output score of a model can
be decomposed into interaction effects of different pat-
terns, i.e. v(x) = > g n 1(S).

(2) Linearity axiom. If we merge output scores of two
models v, and vy as the output of model v, i.e. V.S C
N, v(zg) = wvi(zs) + va(zg), then their interac-
tion effects I, (S) and I,,(S) can also be merged as
VS C N, I,(S) =1, (S) + L,,(5).

(3) Dummy axiom. If a variable ¢ € N is a dummy variable,
ie. VS C N\ {i}, v(zsugiy) = v(zs) +v(x(y), then
it has no interaction with other variables, i.e. V) £ T C
N\ {i}, I(TU{i})=0.

(4) Symmetry axiom. If input variables ¢,) € N cooperate
with other variables in the same way, i.e. VS C N \
{i,5}, v(zsugy) = v(zsugjy), then they have same
interaction effects with other variables, i.e. VS C N \
{i,5}, 1(SU{i}) = I(SU{j}).

(5) Anonymity axiom. For any permutations 7 on N, we
have VS C N, I,(S) = I;,(7S), where 7S 2
{n(#) | i € S}, and the new model 7v is defined by
(mv)(zrs) = v(zg). This indicates that interaction ef-
fects are not changed by permutation.

(6) Recursive axiom. The interaction effects can be com-
puted recursively. Fori € N and S C N \ {i}, the
interaction effect of the pattern S U {i} is equal to the
interaction effect of S with the presence of ¢ minus
the interaction effect of S with the absence of i, i.e.
VS C N\{i}, I(SU{i}) = I(S | i is always present)—
I(S). I(S | ¢ isalways present) denotes the inter-
action effect when the variable ¢ is always present as
a constant context, i.e. I(S | ¢ is always present) =
ZTQS(*U'SHT‘ ~v(@Tugiy)-

(7) Interaction distribution axiom. This axiom character-
izes how interactions are distributed for “interaction
functions” [28]. An interaction function vy parame-
terized by a subset of variables 7' is defined as fol-
lows. VS C N,if T C S, vr(xs) = ¢ ; otherwise,
vr(xg) = 0. The function vp models pure interaction
among the variables in 7', because only if all variables

in T are present, the output value will be increased by
c. The interactions encoded in the function v satisfies
I(T)=c,andVS # T, I(S) = 0.

The Harsanyi interaction I(S) also serves as the basis for
several game-theoretic attributions and interactions, includ-
ing the Shapley value [22], the Shapley interaction index
[8], and the Shapley Taylor interaction index [28].

(1) Connection to the Shapley value [22]. Given an input
sample z, let ¢(¢) denote the Shapley value of an in-
put variable . Then, the Shapley value ¢(i) can be ex-
plained as the result of uniformly assigning attributions
of each Harsanyi interaction to each involving variable
i, ie. p(i) = Yscagiy ‘S‘ﬁl(S U {i}). This also
proves that the Shapley value is a fair assignment of at-
tributions from the perspective of Harsanyi interaction.

(2) Connection to the Shapley interaction index [8]. Given
a subset of variables 7' C N in an input sample =z,
the Shapley interaction index IS"#!¢Y(T') can be repre-
sented as IS"PY(T) = 3 g p mﬁl(s UT). In
other words, the index IS"#!®Y(T') can be explained as
uniformly allocating I(S”) s.t. S = S UT to the com-
positional variables of S’, if we treat the coalition of
variables in 7" as a single variable.

(3) Connection to the Shapley Taylor interaction index
[28]. Given a subset of variables 7 C N in an in-
put sample z, the k-th order Shapley Taylor interaction
index IShapley-Taylor(T') can be represented as weighted
sum of interaction effects, i.e., [Shapley-Taylor(T) — [(T)
if |T| < k‘; IShapley-Taylor(T) :ZSQN\T (‘S‘}c+k)711(s U
T) if |T| = k; and [Shapley-Tylor(Ty — () if | T'| > k.

8. Experimental details

8.1. The point cloud samples for quantifying inter-
actions

This section explains why each input point cloud sample
is divided into n regions for quantifying interactions, and
provides detailed information about the sampled data. As
mentioned in Sec. 3, for an input sample z with n input
variables, the DNN can potentially encode up to 2" interac-
tions. Quantifying all these interactions is computationally
prohibitive if each point in a point cloud is treated as an in-
put variable, as a typical point cloud contains 1024 to 4096
points. Moreover, the contribution of each individual point
to the DNN’s output score is minimal. Thus, treating indi-
vidual points as input variables is unsuitable. Instead, we
divide each input point cloud into n regions following [26]

Toilet Chair Vase Airplane Guitar Person Plant
2 " ® o %
g - 3 Vs
: D S AN

Airplane Chair Motorbike Rocket Knife Pistol Earphone
2 4 : -
W 3 g ¥ 4
P M B BBy e,
A S & -

I ;‘

Chair Desk Bin Table
3 H |
3] &
% o
A o

Figure 11. Visualization of the point cloud samples used for quantifying interactions, with each sample divided into 12 regions.

and treat each region as a “single” input variable. This ap-
proach ensures that each region carries meaningful semantic
information while keeping the total number of interactions,
2", computationally manageable.

In addition, as mentioned in Sec. 3, we adopt the farthest
point sampling (FPS) algorithm and the k-dimensional tree
(KDTree) algorithm for region division. Semantic segmen-
tation is not used for this purpose because its results depend
on model performance, which often varies across categories
and lacks consistency. Furthermore, semantic segmentation
may produce an inconsistent number of regions across dif-
ferent categories, making it difficult to clearly define high-
order and low-order interactions.

We randomly sample 10 point clouds from the test set
of each category in ModelNet40, ShapeNet, and ScanOb-
jectNN to quantify the interactions encoded by different
DNNs, i.e., we sample 400 point clouds from ModelNet40,
160 from ShapeNet, and 150 from ScanObjectNN. For the
ScanObjectNN dataset, we quantify interactions using its
OBJ_ONLY variant. Fig. 11 visualizes several samples
from these datasets, each divided into 12 regions. We ob-
serve that the data distribution varies significantly across
different datasets, which strongly demonstrates the univer-
sality of the common mechanism explored in our study for
different pre-training methods across multiple datasets.

8.2. Implementation details for exploring the com-
mon mechanism of pre-training methods

In this section, we present the implementation details for
exploring the common mechanism of different pre-training
methods (corresponding to Conclusion 1). During the pre-

training phase, to ensure a fair evaluation of the impact of
different pre-training methods on DNNs, we primarily use
the pre-trained weights provided in the respective official
repositories instead of performing pre-training locally. Ex-
ceptionally, for the JigSaw method, since the authors do not
provide an official implementation, we use the reproduced
version available in the repository of the OcCo method.
We fine-tune the pre-trained DNNs on ModelNet40,
ShapeNet, and ScanObjectNN datasets. For the ShapeNet
dataset, due to the relatively low difficulty of the original
dataset, we randomly sample 1% of the training data for
fine-tuning. For the ScanObjectNN dataset, we fine-tune
DNNSs on its OBJ_LONLY variant. During the fine-tuning
process, we randomly sample 1024 points from each point
cloud as the input. Each model is fine-tuned for 100 epochs
with a batch size of 32 to ensure convergence. For DGCNN,
we follow the implementation in [35], setting & (the num-
ber of nearest neighbors) to 20, the dropout rate to 0.5, and
the embedding dimension to 1024. The fine-tuning process
uses the SGD optimizer with an initial learning rate of 0.1
and a cosine learning rate decay scheduler. For PointNet
and PCN, we set the dropout rate to 0.3. The fine-tuning
process uses the Adam optimizer with an initial learning
rate of 0.001 and a step learning rate decay scheduler that
reduces the learning rate by a factor of 0.5 every 20 epochs.

8.3. Implementation details for exploring the im-
pact of different factors on the common mech-
anism

In this section, we present the implementation details for
exploring the impact of different factors on the common

DGCNN PointNet PCN
& 9351 v g m & —
B 3 5 %] 5
z ¢ £ 808 g 9007
o) i
8 ges0 o 3 3
o © X & 895 @
= 3 < 7 8951
o i o 89.2 1 o
= 9254, , , , = = ,
3 4 5 6 40 45 50 55 60 35 . 45 50 55
High-order interaction strength ihish High-order interaction strength chigh High-order interaction strength xhish
S v £ 910 = S ™
< 9501 x| & 9504
- >
© 3 [y oy
z o ® ®
O 3 945 5 90.0 1 5
Q 8 Q Q 94.0 4
© 3 8
o @© © ©
& < 9401 u < 8004 2
8 g g
= T T T [T T T T 2 9301 T T
4.0 4.5 5.0 55 3.5 4.0 4.5 5.0 5.5 35 4.0 45
High-order interaction strength xhigh High-order interaction strength xhigh High-order interaction strength xhigh
z & & 8004 m R
Z 58304 = > 800 1
3 ¢ 8 78.0 g
S 3 8201 - 3 3
CC) 2] S 76.0 g 79.04
S Taolm® " - i .
Q 1 Q Q
S g8l S 74.0 4 5]
= , , , = , , , , = 780 , ,
4.5 5.0 5.5 4.50 4.75 5.00 525 4.0 4.2 4.4 .
High-order interaction strength xhig? High-order interaction strength xhig? High-order interaction strength xhigh
scratch W OcCo JigSaw Vv IAE X CrossPoint » STRL

Figure 12. The relationship between the strength of high-order interactions encoded by different DNNs (including DGCNN, PointNet and
PCN, trained from scratch or with pre-training methods) and their corresponding classification accuracy. Results show that DNNs encoding

stronger high-order interactions tend to exhibit higher accuracy.

mechanism, including the extent of pre-training (corre-
sponding to Conclusion 2(a)) and the amount of fine-tuning
data (corresponding to Conclusion 2(b)).

When exploring the relationship between the extent of
pre-training and the interactions encoded by DNNs, we con-
duct experiments on DGCNN using the IAE and Cross-
Point methods. For the IAE method, we follow its open-
source implementation and pre-train the DGCNN on the full
ShapeNet dataset for 1200 epochs, selecting checkpoints at
epochs 0, 240, 480, 720, 960, and 1200. These models are
then fine-tuned on ModelNet40. For CrossPoint, we fol-
low the implementation details outlined in its paper, pre-
training the DGCNN on ShapeNet for 100 epochs, selecting
checkpoints at epochs 0, 20, 40, 60, 80, and 100, and then
fine-tuning these models on ModelNet40 as well. Next, we
quantify the interactions encoded by these different DNNs.

When exploring the relationship between the amount of
fine-tuning data for downstream tasks and the interactions
encoded by DNNs, we generate varying amounts of fine-
tuning data from ModelNet40 and conduct experiments on
DGCNNS, trained either from scratch or pre-trained using
the IAE or CrossPoint methods. We first randomly sample
one instance per category from the ModelNet40 training set
and then randomly select a specific proportion of the re-
maining instances to create fine-tuning datasets of varying
sizes. Ultimately, we obtain a series of fine-tuning datasets
containing 1%, 10%, 20%, 30%, 50%, 70%, and 100% of
the data. To ensure convergence during fine-tuning with
small-scale datasets, we fine-tune each DGCNN for 200

ModelNet40 classes | ShapeNet classes | # Testing

1 airplane airplane 732
2 car car 239
3 chair chair 1100
4 guitar guitar 237
5 lamp lamp 429
6 laptop laptop 127
7 cup mug 54
8 table table 1436

Table 5. The 8 common classes between ShapeNet and Model-
Net40 and the corresponding number of test samples in ShapeNet.

epochs. Other training configurations for DGCNN remain
consistent with those described in Sec. 8.2.

8.4. Implementation details for exploring the poten-
tial risk of pre-training methods in reducing
DNN’s transferability

In this section, we present the implementation details for
exploring the potential risk of pre-training methods in re-
ducing DNN’s transferability (corresponding to Conclusion
3). We fine-tune DGCNNs on varying amounts of data
from ModelNet40, as described in Sec. 8.3, and evaluate
their performance on the unseen ShapeNet dataset. Since
the categories in ModelNet40 and ShapeNet do not com-
pletely overlap, we select eight common categories between
the two datasets and evaluate the accuracy of DNNs on these

DGCNN (scratch) DGCNN (IAE) DGCNN (CrossPoint)
[0} g [0) g () g 0 0
9% -e-1% -e-50% o< ——1% —e—50% o= ——1% —e—50%
<30 10% -e-70% S <30/ 10% —e—70% o c 10% —e—70%
% =4 & —e-20% 100% %) ——20% 100% % 2,5 ——20% 100%
-2 W -e-30% - 2 ——30% i T ——30%
o » 20 Q ® 20 [CIR7]
N = & % N o N o
T o) T S TS
EB . £B £ B \
‘26 § " vl e] g § 0] \'—o—o—*’/ g § 01 i
0 3 6 9 12 0 3 6 9 12 0 3 6 9 12
Order m Order m Order m

Figure 13. Comparing the normalized average strength of interactions encoded by DNNs fine-tuned with varying amounts of data, including
the DGCNN trained from scratch and the DGCNN pre-trained using the IAE or CrossPoint methods. Results show that as the amount of
fine-tuning data increases from 1% to 100%, the strength of high-order interactions encoded by the DNNs generally increases, while the
strength of low-order interactions decreases. Additionally, for any given amount of fine-tuning data, pre-trained DGCNNs consistently
encode stronger high-order interactions than the DGCNN trained from scratch.

categories from ShapeNet. Detailed information is provided
in Tab. 5. The training configurations for DGCNN are con-
sistent with those outlined in Sec. 8.3.

8.5. Implementation details for training DNNs with
the proposed loss term

In this section, we explain the process of training DNNs
with the proposed loss term and present the implemen-
tation details for training DNNs on classification and se-
mantic segmentation tasks. As noted in Sec. 5, comput-
ing Eq. (6) is NP-hard. When the training dataset is large,
such as ModelNet40 with 9843 training samples, quantify-
ing all 2" interactions for each sample becomes infeasible.
To address this, we adopt a sampling-based approach, as
described in Sec. 5, and derive the approximate formula for
the interaction loss, presented in Eq. (7). However, calculat-
ing L] raction fOr all samples still incurs significant compu-
tational overhead. Therefore, we randomly select a subset
of samples from each batch and compute L only for

interaction
this subset. Specifically, we sample + of the data from a

batch, i.e., 4 samples from a batch 0? 32. This approach
ensures that the computation of the proposed loss remains
within a manageable range.

For the 3D point cloud classification task, we evaluate
the effectiveness of our proposed loss term on the Model-
Net40 and ScanObjectNN datasets. For the ScanObjectNN
dataset, we conduct experiments on its most challenging
variant, PB_T50_RS, which is derived from the original
dataset through random bounding box shifts, rotations, and
scaling. This variant includes 11,416 training samples and
2,882 testing samples. In our experiments, we randomly
sample 1,024 points from each point cloud as the input for
both training and testing. All training settings for DNNs
remain consistent with those outlined in Sec. 8.2.

For the semantic segmentation task, we conduct experi-
ments on the S3DIS dataset, as described in Sec. 5. S3DIS
consists of 3D point clouds collected from six large-scale
indoor environments, each annotated with per-point cate-

gorical labels. Specifically, following the implementation
details in [38], we divide each room instance into 1m x 1m
blocks and randomly sample 4,096 points from each block
as input. We first train the DGCNN on the ModelNet40
dataset for the classification task, and then fine-tune it on the
semantic segmentation task using six-fold cross-validation.
All other training settings for DGCNN remain consistent
with those in Sec. 8.2.

9. More experimental results

9.1. Additional Results for Conclusion 1

As a supplement to Fig. 3 (b), Section 4.2 of the paper,
we present the relationship between the classification ac-
curacy and the strength of high-order interactions encoded
by PointNet and PCN, as shown in Fig. 12. The figure re-
veals a trend consistent with that observed for DGCNNSs,
i.e., DNNs encoding stronger high-order interactions tend
to achieve higher accuracy. This observation further rein-
forces Conclusion 1.

9.2. Additional Results for Conclusion 2(b)

As a supplement to Fig. 7 (b), Section 4.3 of the paper,
we present the interactions encoded by the DGCNN trained
from scratch with varying amounts of data, comparing them
with the interactions encoded by the DGCNNs pre-trained
using the TAE or the CrossPoint methods. As show in
Fig. 13, the strength of high-order interactions encoded by
the DGCNN trained from scratch increases as the amount of
fine-tuning data grows from 1% to 100%, while the strength
of low-order interactions generally decreases, similar to the
pre-trained DGCNNs. This observation further supports
Conclusion 2(b). Moreover, for any given amount of fine-
tuning data, the pre-trained DGCNNSs consistently encode
stronger high-order interactions than the DGCNN trained
from scratch, further validating the common mechanism
discussed in Conclusion 1.

	Introduction
	Related work
	Interactions in 3D point cloud processing
	Interpreting different pre-training methods using interactions
	Comparative study setup
	Exploring the common mechanism of different pre-training methods
	Exploring the impact of different factors on the common mechanism
	Exploring the potential risk of pre-training methods in reducing DNN's transferability

	Guiding the training process using the common mechanism
	Conclusion
	Properties of interactions
	Experimental details
	The point cloud samples for quantifying interactions
	Implementation details for exploring the common mechanism of pre-training methods
	Implementation details for exploring the impact of different factors on the common mechanism
	Implementation details for exploring the potential risk of pre-training methods in reducing DNN’s transferability
	Implementation details for training DNNs with the proposed loss term

	More experimental results
	Additional Results for Conclusion 1
	Additional Results for Conclusion 2(b)

