
Active Event-based Stereo Vision
— Supplementary Material —

Jianing Li Yunjian Zhang Haiqian Han Xiangyang Ji *

Tsinghua University
lijianing@pku.edu.cn, sdtczyj@gmail.com, hanhq23@mails.tsinghua.edu.cn, xyji@tsinghua.edu.cn

A. Overview
In this supplementary material, we give detailed descrip-
tions of our active event-based stereo vision as follows:
1) Sec. B provides event camera working principles, par-

ticularly when combined with structured light.
2) Sec. C presents the details about our active event-based

stereo camera prototype and the newly built datasets.
3) Sec. D provides more details of the proposed method,

including an in-depth description of the network archi-
tecture (i.e., ActiveEventNet).

4) Sec. E revisits some widely used evaluation metrics in
the stereo matching task.

5) Sec. F reports additional experimental results to verify
the effectiveness of our ActiveEvenNet, including more
visualization results and quantitative metrics.

B. Event Camera Working Principles
Event cameras [4], such DVS [5, 10, 16], implementing
an abstract of the photoreceptor-bipolar-ganglion cell infor-
mation flow, model the structure of the biological retina.
In contrast to conventional frames, each pixel in DVS in-
dependently responds to light changes in illumination in-
tensity I(u, t) with a stream of events. More specifically,
an event en is a four-attribute tuple ⟨xn, yn, tn, pn⟩ using
the address event representation (AER), triggered for the
pixel u=⟨xn, yn⟩ at the timestamp tn when the log-intensity
changes over the pre-defined threshold θth. This process
can be depicted as:

lnI(un, tn)− lnI(un, tn −∆tn) = pnθth, (S1)

where ∆tn is the temporal sampling interval at a pixel, the
polarity pn ∈ {1,−1} denotes whether the brightness is
increasing or decreasing.

The event train Ts = {tn ∈ Γ : n = 1, ..., N} is a se-
quence of ordered event firing timestamps for one pixel,
which can be mathematically described as:

Ts (t) = {pnδ (t− tn)}Ne

n=1 , (S2)

*Corresponding author: Xiangyang Ji.

where Ne is the number of events in single pixel during the
time interval, and δ (·) refers to the Dirac delta function,
with δ (t) = 0,∀t ̸= 0 and

∫
δ (t) dt = 1.

Intuitively, asynchronous events appear as sparse and
discrete points in the spatiotemporal domain [9, 13, 14, 22],
which can be described as follows:

S (x, y, t) = {pnδ (x− xn, y − yn, t− tn)}Ne

n=1 . (S3)

In general, passive event-based vision usually detects
changes in light intensity across the 400 nm-780 nm spec-
trum. Besides, the chip of DAVIS346 camera [24] is sensi-
tive to 300 nm-1000 nm, the generation of the event streams
is mainly affected by natural light, laser light, and noise.

In this study, we introduce an innovative approach in-
volving an 850 nm infrared 2D structured light pattern com-
bined with an event camera. This solution enables the gen-
eration of dynamic events within static scenes by adjust-
ing laser intensity or frequency. Consequently, event-based
camera systems, by introducing structured light, may over-
come some challenges in texture-less regions or extremely
low light scenes. In fact, bio-inspired event cameras are in-
creasingly being utilized in combination with infrared struc-
tured light for high-speed depth sensing. As illustrated in
Table S1, structured light sources are commonly catego-
rized into three types (i.e., point, line, and 2D pattern).

C. Camera Prototype and Datasets
Realistic Synthetic Dataset. To meet a huge demand for
labor-saving, high-quality synthetic, and labeled disparity
maps for benchmarking learning-based stereo matching al-
gorithms, we establish a highly realistic synthetic dataset,
namely RealSense-Event-Sim, which uses the V2E simula-
tor [7] to convert infrared stereo videos into event streams.
To be precise, an Intel RealSense D435 camera, offering
RGB images and infrared images in stereo pairs, is utilized
to record 119 video sequences. The raw recordings cover
diverse indoor and outdoor scenes, varying lighting condi-
tions, and different camera movement speeds. As shown in
Fig. S1, take the left camera for example, we first interpolate
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Method Venue Year Type Density Camera Resolution Projector Framework Depth label Code

Manasi et al. [19] 3DV 2021 Monocular Sparse Gen3 640×480 Laser point, 60 Hz Model-based Sparse ✓
Muglikar et al. [20] 3DV 2021 Monocular Dense Gen3 640×480 Laser point, 60 Hz Learning-based Dense ✗
Brandli et al. [2] FNR 2014 Monocular Sparse DVS128 128×128 Laser line, 500 Hz Model-based No ✗
Wieland et al. [18] CVPRW 2023 Monocular Sparse Gen3 640×480 Laser line, 60 Hz Model-based No ✓
Takatani et al. [23] CVPR 2021 Monocular Sparse DAVIS346 346×260 Laser beam Model-based No ✗
Leroux et al. [12] arXiv 2018 Monocular Sparse ATIS 304×240 Laser 2D pattern Model-based No ✗
Ashish et al. [17] SPL 2020 Monocular Sparse DAVIS346 346×260 Laser 2D pattern Model-based No ✗
Huang et al. [8] OE 2021 Monocular Sparse Celex-V 1280×800 Laser 2D pattern, 9500 Hz Model-based No ✗
Fu et al. [3] OE 2023 Monocular Dense EKV4 1280×720 Laser 2D pattern, 60 Hz Model-based No ✗
Bajestani et al. [1] WACV 2023 Monocular Sparse Gen3 640×480 Laser 2D pattern, 4225 Hz Model-based No ✗
Li et al. [15] IEEE SJ 2024 Monocular Sparse DAVIS346 346×260 Laser 2D pattern, 60 Hz Model-based No ✗
Wang et al. [26] MTF 2022 Monocular Dense DVXplorer 640×480 Laser 2D pattern Learning-based Dense ✗

Ours - 2024 Stereo Dense DAVIS346 346×260 Laser 2D pattern Learning-based Dense ✓

Table S1. A literature review of event-based vision system using active infrared light.

Figure S1. The pipeline of generating active event-based stereo matching simulated dataset. Initially, the simulator interpolates the low-
frame-rate infrared video to create a high-frame-rate video. Then, we use a linear-to-logarithmic mapping operation, implement a low-pass
filter, and apply a differential comparison principle to generate events. Lastly, we incorporate the noise model into raw event streams.

the low-frame-rate infrared video to create a high-frame-
rate video. Subsequently, we utilize a linear-to-logarithmic
mapping operation, implement a low-pass filtering proce-
dure, and apply a differential comparison principle to gener-
ate dynamic events. Lastly, we incorporate the noise model
from the event camera into raw event streams. In particu-
lar, since the raw infrared videos are associated with active
stereo vision, the synthetic event data comprises 2D infrared
patterns with structured light. Compared to passive stereo
vision, active event-based stereo vision can overcome some
challenges in texture-less regions or dark conditions. Statis-
tically, our newly built dataset (i.e., RealSense-Event-Sim)
consists of stereo pairs of event streams and 23.8k synchro-
nized ground truth labels recorded at 20 Hz. This highly
synthetic dataset is divided into 16k samples for training,
3.8k for validation, and 4k for testing.
Spatiotemporal Calibration for Camera Prototype. We
build a prototype stereo camera system by integrating two
DAVIS346 cameras (i.e., resolution 346×260), an infrared

2D pattern projector, and an Intel RealSense D455 camera.
Spatiotemporal calibration is a critical step for hybrid multi-
camera systems. For temporal calibration, we synchronize
the two stereo event cameras and the RealSense D455 cam-
era in the temporal domain by publishing the timestamp of
each topic in the robot operating system (ROS). For spatial
calibration, one objective is to establish a horizontal base-
line correction for stereo matching between the two event
cameras. Another goal is to ensure that the RealSense cam-
era shares the same view as the left event camera. The
main reason is that we use the flagship RealSense D455
stereo camera at 15 FPS to capture depth ground truth in
normal scenes and also as a fair comparison in high-speed
motion scenarios. More specifically, a standard checker-
board is first placed in front 1 m away from our active event-
based stereo camera system to make a full view [27]. Then,
we utilize a professional binocular stereo matching correc-
tion toolbox to perform baseline correction on RGB images
from two DAVIS346 cameras. Meanwhile, the homogra-



Figure S2. Representative spatiotemporal synchronized examples of our Active-Event-Stereo dataset. We use binocular DAVIS346 cameras
and a RealSense D455 camera to record stereo event streams and depth values in both indoor and outdoor scenarios.

phy adopts an affine transformation that connects two sets
of coordinates as follows:
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where a 3×3 matrix R is computed using the checker-
board keypoints between two cameras. [x1

i , y
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T and
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T are the coordinates in two RGB images from
the left DAVIS346 camera and the RealSense D455.
Real-world Dataset. We use the built stereo camera proto-
type to record 85 sequences including event stream pairs,
RGB frames, infrared frames, and depth values. After
spatiotemporal calibration, all labels are provided at a fre-
quency of 15 Hz by the RealSense D455. As a result, the
newly built dataset (i.e., Active-Event-Stereo) offers event
streams in stereo pairs and 21.5k synchronized true labels.
Afterward, we split them into 14.6k for training, 3.6k for
validation, and 3.3k for testing. As illustrated in Fig. S2,
we show some representative spatiotemporal synchronized
examples using our stereo camera prototype. In particu-
lar, these scenarios take velocity distribution, illumination
change, scene diversity, and varying distances into account.
All in all, such a novel event-based stereo system with
structured light and professional design enables our Active-
Event-Stereo to be a competitive dataset.

D. Architecture Network Details
This work aims at designing a lightweight yet effective
active event-based stereo matching network, termed Ac-
tiveEventNet, which generates high-speed dense disparity
maps via integrating binocular event cameras and infrared
structured light. More specifically, the input event stream is
first divided into temporal bins, with each bin transformed

into a 2D image-like representation, referred to as event ten-
sors. To improve the efficiency of event-based stereo match-
ing models, we incorporate lightweight MobileNet blocks
alongside standard convolutions, which serve as critical
components for tasks like feature extraction and encoder-
decoder processing. Then, event stereo embeddings are
passed through a feature extraction module and a channel
reduction module, producing compact yet highly informa-
tive features. Furthermore, we present a novel 3D cost vol-
ume design that dynamically exchanges channels and con-
catenates interaction features from stereo inputs. This cost
volume represents the matching costs of corresponding pix-
els between two event streams captured from slightly dif-
ferent viewpoints. Finally, the 3D cost volume is processed
through an encoder-decoder module equipped with a stack
of lightweight convolutional layers. This is followed by
dense disparity map generation using regression modules.

E. Evaluation Metrics
This section gives the more details of six metrics from the
stereo matching task [11, 21], which includes EPE, RMSE,
D1-all, and bad pixel ratios (i.e., >1px, >2px, and >3px).
End-Point-Error (EPE). The EPE is calculated as the av-
erage L1 distance between each estimated disparity de and
its corresponding ground truth disparity dgt. It can be for-
mulated as follows:

EPE =
1

Np

Np∑
i=1

|d(i)
e − d

(i)
gt |, (S5)

where Np is the total number of pixels in the disparity map.
Root Mean Square Error (RMSE). The RMSE measures
the average magnitude of the errors between each estimated



Scenario Sequence EPE ↓ RMSE ↓ D1-all ↓ >1px ↓ >2px ↓ >3px ↓ Runtime (ms)

Indoor with normal light

002 indoor boxes 1.064 1.834 0.063 0.329 0.131 0.063 23.5
003 indoor desk 1.320 2.125 0.097 0.408 0.175 0.097 22.3
010 indoor desk 2.408 4.671 0.161 0.538 0.288 0.181 19.8
042 indoor car 0.761 1.164 0.020 0.538 0.070 0.020 20.4
050 indoor office cabinet 1.108 1.780 0.063 0.371 0.129 0.062 20.7
059 indoor conference room 0.777 1.184 0.025 0.248 0.066 0.025 29.2
064 indoor office checkerboard 0.983 1.948 0.042 0.257 0.085 0.042 23.8
073 indoor floor 2.531 4.518 0.186 0.562 0.303 0.186 20.2
078 indoor office room 1.091 2.195 0.055 0.272 0.099 0.055 19.5
106 indoor checkerboard 1.075 2.855 0.043 0.224 0.075 0.043 20.1
107 indoor checkerboard 0.863 2.007 0.027 0.226 0.061 0.027 28.4

Indoor with low light
015 indoor desk night 1.351 2.120 0.059 0.338 0.120 0.059 24.5
057 indoor office night 1.403 2.481 0.105 0.390 0.179 0.105 28.5
108 indoor checkerboard night 0.661 1.007 0.015 0.188 0.038 0.002 29.8

Outdoor with normal light
090 outdoor floor 0.779 1.235 0.027 0.233 0.067 0.027 20.5
097 outdoor bridge 0.606 1.035 0.021 0.146 0.044 0.021 28.2
100 outdoor people 0.714 1.308 0.022 0.162 0.040 0.022 24.9

Outdoor with low light 118 outdoor wall night 1.577 2.980 0.123 0.375 0.193 0.123 29.8
119 outdoor wall night 1.858 3.301 0.149 0.420 0.226 0.149 26.3

All Average 1.223 2.320 0.070 0.314 0.127 0.070 21.9

Table S2. Performance evaluation of our highly synthetic RealSense-Event-Sim dataset in various scenarios.

Figure S3. Representative examples of different stereo matching results on our synthetic RealSense-Event-Sim dataset. To enhance
visualization and comparison, we implement a mask to the void areas of the ground truth to the predicted dense maps.

disparity de and its corresponding ground truth disparity
dgt. It can be described as follows:

RMSE =

√√√√ 1

Np

Np∑
i=1

(d(i)
e − d

(i)
gt )

2. (S6)

D1-all. The D1-all usually refers to the percentage of pixels
where either the absolute disparity error is greater than 3
pixels meanwhile the relative disparity error exceeds 0.05.
Thus, this metric can be depicted as follows:

D1-all =
1

Np

Np∑
i=1

(I[|d(i)
e − d

(i)
gt | > 3) ∧

d(i)
e − d

(i)
gt

d
(i)
gt

> 0.05]),

where I represents the indicator function that takes on the
value 1 if a specified condition is true, and 0 otherwise.
Bad Pixel Ratios (BPR, >1px, >2px, and >3px). The
three metrics refer to the bad pixel ratio that measures
the percentage of pixels with disparity errors exceeding a
threshold θδ (e.g., 1 pixel, 2 pixels, and 3 pixels) as follows:

BPR =
1

Np

Np∑
i=1

(I[|d(i)
e − d

(i)
gt | > θδ)]. (S7)

F. Additional Experiments
F.1. Effective Test on Synthetic Dataset
Evaluation on Various Sequences. To give a detailed as-
sessment of our synthetic RealSense-Event-Sim dataset, we
report the quantization results of each sequence in Table S2.



Figure S4. Comparison with our stereo camera prototype and the
RealSense D455 in high-speed motion blur scenarios.

Notably, our ActiveEventNet achieves a satisfactory perfor-
mance, yielding an average end-point-error (EPE) of 1.223
and the D1-all metric of 0.070, while delivering real-time
inference at a speed of nearly 50 frames per second (FPS)
for a resolution of 640×480.
Comparison with SOTA Methods. To further verify the
effectiveness of our ActiveEventNet, we report represen-
tative visualization results of stereo matching algorithms
on our synthetic RealSense-Event-Sim dataset in Fig. S3.
Note that, the classical SGM [6] only obtains sparse dis-
parity maps from stereo reconstructed images. Our Ac-
tiveEventNet produces a higher quality dense disparity map
than the DDES method [25]. For example, our method dis-
cerns that the sharpness of the edge contour closely resem-
bles the ground truth, whereas the edge contour produced
by the DDES method lacks such sharpness.

F.2. Scalability Test on Real-world Dataset
To verify the effectiveness of our solution for high-speed
depth sensing, we compare our stereo camera prototype
with the RealSense D455 in high-speed motion blur scenes.
As illustrated in Fig. S4, RGB images exhibit motion blur in
high-speed scenes, making it challenging to discern the ob-
ject’s outline. Conversely, the event camera excels in cap-
turing the edge contour of the object. In particular, when
comparing disparity maps generated by our method with
that of the RealSense D455, our solution produces a higher-
quality disparity map. In other words, our solution using
event cameras outperforms conventional frames for high-
speed depth sensing.
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