Articulated Kinematics Distillation from Video Diffusion Models

Supplementary Material

1. Automatic Skinning Weight Computation

Assigning skinning weights to Gaussian kernels is not a
straightforward task. For example, a kernel close to a bone
actually should not be affected by it if the shortest seg-
ment from the kernel passes the outside region of the ob-
ject. As a concrete example, Gaussian kernels on one foot
of a human should not be influenced by the other foot.
While using learnable weights could address this [2, 3, 5],
it would undermine the degree-of-freedom (DoF) reduction
achieved by the rigging system. To resolve ambiguities in
weight assignment, we use a reference mesh that aligns with
the geometry of 3DGS to define weights on the mesh sur-
face, and then transfer these weights to the Gaussian ker-
nels. This mesh is typically an output form from text-to-
3D frameworks or can be generated using mesh extraction
tools. For automatic weight computation on the mesh, we
use the widely adopted auto-rigging system Pinocchio [1].
Pinocchio conceptualizes weight computation on a simply
connected mesh as a heat diffusion process along the mesh
surface, accounting for bone visibilities blocked by other
surface parts. Specifically, for the bone b, the weight con-
tribution vector w® on vertices is computed by solving the
following Poisson equation:

—Aw® + Hw® = Hp®. (1)

Here, A is the cotangent surface Laplacian operator. pg- =1
only if the closest bone to the vertex j is b. H? is a diago-
nal matrix with entries H ;-’j =c/ d? only if bone b is visible
from vertex j within the mesh, where c is a user-defined
constant and d; is the distance from vertex j to bone b.
The visibility is determined by whether the segment from
the vertex to its closest point on the bone is completely en-
closed within the mesh. This equation can be interpreted
as follows: the bone first transfers heat to its visible vertex,
and then the heat diffuses along the surface. The resulting
heat distribution represents the weight field for that bone.
We extend Pinocchio to support noisy mesh inputs that may
have multiple components by manually setting the visibil-
ity of a connected component to its nearest bone as true if
all bones are invisible from that component. This can pre-
vent the system matrix of Eq. (1) from being singular and
allows the outlier components to be controlled by their near-
est bones.

By concatenating the weight contributions of each bone,
we obtain the weight matrix W & RV*B_ where V is the
number of vertices. Each row of W represents the skinning
weight vector at a given vertex. These weight vectors can
be interpolated to arbitrary surface points on the mesh using

barycentric interpolation. Since Gaussian kernels generated
during reconstruction are typically located near the geomet-
ric surface, we identify weight vectors of Gaussian kernels
with their nearest surface points on the mesh.

2. SDS Gradient for V-Prediction Diffusion
Models

The video diffusion model in our pipeline, CogVideoX-5B
[8], is a v-prediction diffusion model [7], where the model
predicts the so-called velocity instead of noise. The diffu-
sion loss for training is
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where z is the latent code of a video, 2 = /a;z; —
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a large transformer. Taking the derivative of Lpig W.r.t. z,
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Here we omit the constant 2 that arise from the derivative of
the square function for notation simplicity. Following the
SDS gradients for U-Net-based diffusions [6], where terms
involving the gradients of U-Nets are omitted, we similarly
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3. Shadow Casting

We can also cast shadows on the ground layer mentioned
above to further indicate the spatial relationship between the
object and the ground. When a rendering ray intersects with
the ground at a point P, the ground color is weighted by this
heuristic shadow intensity: s(P) = 1— sy exp(—38d(P)),
where d(P) is the vertical height from the ray-ground inter-
section point P to the deformed asset, s,y is the maximum
level of shadowing to apply, and [ is the decay coefficient
as the object height above increases. This shadowing ap-
proximates a distant, parallel light source positioned ver-
tically above the ground, complemented by diffusive am-
bient lighting. Incorporating shadows in SDS optimization
does not yield substantial improvements in motion synthesis
quality, but it can increase the immersiveness when humans



Figure 1. Gallery of skeleton systems from our experiments.

evaluate the generated videos. We leave a more thorough
investigation of more advanced rendering techniques such
as true global illumination to future work.

4. Implementation Details

Motion Synthesis The video SDS loss is evaluated with
CFG = 100. The diffusion time ¢ is sampled uniformly
from [tgart, tend), Where tgun = 0.02 and {enq decrease lin-
early from 0.98 to 0.5 over the first 5000 optimization it-
erations. In the training loss, we set Ay = 2 X 105 and
Ao = 107. A total of 10,000 optimization iterations are per-
formed.

Motion Tracking We use Warp [4] to simulate skeletons
as articulated rigid bodies while optimizing the tracking loss
and applying gradient clipping with PyTorch. A chunk of
simulation substeps is wrapped as a differentiable Pytorch
layer using torch.autograd.Function. During the
forward pass, data from the PyTorch scope is transferred to
Warp, and a Warp gradient tape is initialized and stored to
capture the computational graph within the Warp scope dur-
ing forward simulation. In the backward pass, gradients re-
ceived from the PyTorch scope are transferred to the Warp
scope, and the gradient tape backpropagates the gradients
in reverse time. Once the required gradients for the layer’s
inputs are computed, gradient clipping is applied to them
before transferring them back to the PyTorch scope. To en-
sure that assets remain standing on their own, we introduce

a virtual penalty force to keep the root bones of their ar-
ticulation trees aligned with their initial upward directions.
During training, we set A3 = 0.2 and perform 200 optimiza-
tion iterations.

5. Skeleton Gallery

Here, we present a gallery of skeleton systems utilized in
our experiments, as shown in Fig. 1. All skeletons are man-
ually crafted in Blender. Mesh representations of assets are
initially imported into Blender, followed by the embedding
of bones based on their biokinematic structure.

6. Additional Motion Diversity Experiments
with Artist-Rigged Characters

Our method supports artist-rigged characters with prede-
fined skeleton embeddings and skinning weights. To use
these assets, we convert them to 3DGS and transfer the pre-
defined skinning weights to Gaussian kernels. The SDS op-
timization process remains unchanged. In Fig. 2, we show
a fox jumping, and a girl dancing and punching. These as-
sets are all artist-rigged: the fox is from Truebones' and
the girl is from Mixamo’. We note that additional consis-
tent textural descriptions in prompts are crucial for human
motion synthesis. On the other hand, we find that whether
our method can produce diverse motions largely depends

https://truebones.qgumroad.com/1/skzMC
2ht:ps://www.mixamo.com/
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Figure 2. Additional Motion Diversity Experiments

on the ability of the video model to synthesize desired full-
body motions. It is difficult for our method to generate
animals sitting since CogVideoX struggles with transitions
from standing to sitting, as well as precise human motion
control such as cartwheeling and raising hands. Addition-
ally, fine-grained motions, such as hand pose variations, are
difficult to capture.
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