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Table 7. Comparison with state-of-the-art methods on the DSEC-
Detection dataset [13] with two classes (i.e., pedestrian and car).

Modality Method Representation mAP mAP50

Event
RVT [15] Voxel Grid 0.384 0.587

SAST [30] Event Volume 0.381 0.601
SSM [39] Voxel Grid 0.380 0.552

Frame+Event

DAGr-18 [13] Frame+Graph 0.376 -
DAGr-34 [13] Frame+Graph 0.390 -
DAGr-50 [13] Frame+Graph 0.419 0.660

DAGr [13] ACGR 0.457 0.688
SODFormer [22] ACGR 0.523 0.742

A. More Details on DSEC-Detection
A.1. DSEC-Detection Dataset
DSEC [16] is a stereo camera dataset designed for driving
scenarios, comprising data captured by two monochrome
event cameras (i.e., Prophesee Gen3.1) and two global shut-
ter color cameras (i.e., FLIR Blackfly S USB3). The dataset
encompasses various lighting conditions, including favor-
able and challenging illumination environments, to support
robust evaluation of vision-based systems. As an exten-
sion of DSEC, the DSEC-Detection dataset [13] is specifi-
cally tailored for object detection tasks. It contains 60 hy-
brid sequences (53 from DSEC and 7 additional with chal-
lenging scenarios), of which 47 are for training and 13 for
evaluation. The spatial resolution of the visual streams is
640×480, and the frame rate of RGB frames is 20 Hz. The
bounding boxes are generated by Quasi-Dense Tracking
based on the RGB frames and manually corrected, with a
total of 70,379 frames and 390,118 annotations. The DSEC-
Detection dataset involves 8 classes: pedestrian, rider, car,
bus, truck, bicycle, motorcycle, and train. However, some
existing studies [13] evaluate object detection models us-
ing only two classes: pedestrian and a consolidated “car”
category combining car, bus, and truck.

A.2. Extensive Comparisons with Two classes
As clarified in Sec. 4.1, we evaluate the ACGR on the full
8 classes in Sec 4. For a fair comparison, we conduct
quantitative evaluation experiments on the two-class DSEC-
Detection dataset. As shown in Table 7, the results show
that with the ACGR, the mAP of DAGr considerably im-
proves by 3.8%. Furthermore, SODFormer achieves satis-
factory results leveraging ACGR as representation, reaching
an extraordinary mAP of 0.523. Compared to event-based
unimodal approaches, our methods exhibit exceptional per-
formance with a distinct advantage of at least 7.3% mAP
improvement. In other words, this two-class test further
confirms the effectiveness of the proposed ACGR.

B. Event Representations

Numerous methods have been proposed to design event
representations to make asynchronous events compatible
with deep learning methods. To compare these represen-
tations and highlight the advantages of ACGR, we summa-
rize widely used event representations along with their brief
descriptions and characteristics in Table 8.

Specifically, we categorize the existing event represen-
tations broadly into five types. The first type typically
projects events onto a 2D image based on their spatial posi-
tion and polarity. While these methods are straightforward
and efficient, they often discard temporal information. Sec-
ond, a variety of more complex handcrafted methods have
been developed to preserve temporal information. How-
ever, these methods are highly sensitive to hyperparameters
(e.g., the number of temporal bins in voxel grids) and gen-
erally lack generalizability. To this end, some approaches
employ ANNs to generate learning-based representations,
achieving state-of-the-art performance. However, these ap-
proaches come at the cost of increased computational com-
plexity and energy consumption. Recently, emerging brain-
inspired SNNs have been proposed to process event streams
as binary spikes, offering low-energy solutions. Neverthe-
less, their performance is currently constrained by the train-
ing algorithms, making them unable to match ANNs in per-
formance. Moreover, all four types above face challenges in
processing asynchronous event-by-event input, resulting in
significant redundant computation during continuous infer-
ence. Although SNNs have the potential to overcome this
issue, relevant research remains limited.

In contrast, graph-based representations simultaneously
retain the spatiotemporal properties and sparsity of event
streams while supporting asynchronous input, making them
the most effective representation for processing event
streams. Moreover, the ACGR is the first trail to introduce
RGB frames into the graph representation, significantly en-
hancing its capacity to adapt to diverse scenarios.

C. Preliminaries

C.1. Spline Convolution

In the GMAL module (see Sec. 3.3), we utilize spline con-
volution [10] to learn the ACGR by message passing and
cross-modal interaction. Here we elaborate on the imple-
mentation of spline convolutions for legibility. Technically,
spline convolution uses continuous B-splines as kernels for
graph convolutions. As formulated in Eq. 7, the edge fea-
ture eij is mapped to the convolutional weight with the



Table 8. Comparison of some representative event representation methods.

Type Event representation Dimensions Description Temporal Polarity Asyn.

Event images
Binary image [31] 2×H ×W Two-channel image of event polarities ×

√
×

Event count image [27] 2×H ×W Rate-based image of event counts ×
√

×
Grayscale image [34] H ×W Binarized grayscale image after filtering

√ √
×

Handcrafted
features

Voxel grid [37] B ×H ×W Voxel grid summing event polarities
√

× ×
Voxel cube [7] C × T ×H ×W 4D voxel grid tensor

√
× ×

Hyper histogram [29] 4K ×H ×W 3D temporal histograms
√ √

×
TORE volume [1] 2K ×H ×W 4D voxel grid of last K timestamps

√ √
×

SAE [5] H ×W Time surface of active events
√ √

×
SSR [28] C ×H ×W Sparsely updating with each new event

√
×

√

ANN-based

EST [14] 2×B ×H ×W Learning an event spike tensor using MLPs
√ √

×
Matrix-LSTM [4] C ×H ×W Learning an event tensor using LSTMs

√ √
×

Dense memory cells [18] L×D Event cells using MLPs and the attention
√ √

×
Event embedding [24] C ×H ×W Learning an event tensor using TACN

√ √
×

Reconstructed image [32] H ×W Intensity image using E2VID algorithm
√

× ×
SET [17] 2×H ×W Learning sparse event tensors using LSTMs

√ √
×

SNN-based
Spike image [23] 2×H ×W Two-channel image using the LIF model

√ √
×

Leaky surface [3] H ×W Event image using the leak surface layer
√

× ×
ARSNN [35] C ×H ×W Event tensor using the recurrent SNNs

√ √
×

Graph-based

Event Graph [2] N × 1 Using events as nodes and polarity as feature
√ √ √

Spatio-Temporal Clouds [6] N × 3 Using events as nodes and position as feature
√

×
√

Voxel Graph [8] Np ×D Voxeling events into nodes
√ √ √

ACGR (Nf +Ne)×D Integrating frames and events into one graph
√ √ √

learnable function W ′, which is a smoothed matrix-valued
function modeled by a 1-order 2-dimensional B-spline with
5× 5 learnable weights θW′ . More concisely, the learnable
weights θW′ act as the control points in the B-spline, deter-
mining the value of the B-spline at each 2D coordinate in
[0, 1]2. For each edge feature eij , W ′(eij) is the value of
the B-spline at eij interpolated by the basis functions and
θW′ . For more details, please refer to [10].

C.2. Adversarial Domain Adaptation
We provide some preliminaries about Adversarial Domain
Adaptation (ADA) to better understand the novel training
strategy introduced in Sec. 3.3. Domain adaptation aims
to address the challenge of applying a model trained on the
source domain to the target domain with a different data dis-
tribution by aligning the distributions of the source and tar-
get domains. Inspired by Generative Adversarial Networks
(GANs), ADA achieves this by leveraging similar learn-
ing principles to train a domain-invariant feature extractor
and a discriminator. Concretely, ADA introduces a domain
discriminator that tries to distinguish between source and
target domain features while training a feature extractor
to confuse the discriminator. Incorporated with the task-
specific head shown in Fig. 4, the overall optimization ob-
jective can be expressed as:

min
F,T

max
D

Lt(F, T )− λLd(F,D), (12)

where F , T , and D are the feature extractor, the task-
specific head, and the discriminator. The gradient reversal

layer [11] reverses the gradient direction for F to avoid al-
ternating between minimization and maximization.

Despite the strong capability ADA has demonstrated in
domain alignment within transfer learning, its application
in multimodal fusion remains underexplored. Intuitively,
the features of different modalities reside in distinct fea-
ture spaces, making cross-modal interaction less effective
since they cannot interpret each other’s features. To address
this limitation, the proposed multimodal training strategy
explicitly aligns the feature spaces of different modalities
using ADA before cross-modal interaction. Considering the
potential instability introduced by ADA during training, we
first pre-train the ACGR without ADA and subsequently in-
tegrate ADA to enhance cross-modal interaction.

D. Detailed Network Architecture

For clarity, we specify the detailed network architecture and
layer parameters in Table 9. The output sizes and pooling
parameters listed in Table 9 are derived under the assump-
tion of an input size of T = 10, H = 480,W = 640,
where the three dimensions of downsampling rate and out-
put size correspond to T,H,W , respectively. LUT-SC
represents Lookup-Table SplineConv [13], which acceler-
ates computations by obtaining W ′(eij) via a lookup ta-
ble. Conv2D(cin, cout) indicates the input channel is cin
and the output channel is cout, and similar conventions ap-
ply to Conv3D and LUT-SC layers. The Pooling layer with
arguments gt, gy, gx denotes the size of grid cells in each
dimension. From Table 9, we can see that the frames and



Table 9. Detailed architecture specifications in ACGR.

Stage
Downsp. rate
(output size)

Layer Name Frame Event

Graph Construction
1×, 2×, 2×

(10×240×320)
Patch / Voxel Embedding Conv2D(3, 32), BN Conv3D(2, 32), BN

GMAL

1×
(10×240×320)

Layer 1
LUT-SC(35, 32), BN
LUT-SC(32, 32), BN

10×, 4×, 4×
(1×60×80)

Pooling 1 Pooling(10, 4, 4)

Layer 2
LUT-SC(35, 64), BN
LUT-SC(64, 64), BN

1×, 4×, 4×
(1×15×20)

Pooling 2 Pooling(1, 4, 4)

Layer 3
LUT-SC(67, 128), BN

LUT-SC(128, 128), BN
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Figure 8. Comparison of the training progress between different
methods with or without pre-train on DSEC-Detection [13, 16].

events are integrated into a unified graph before entering the
GMAL module, thus reducing the model size and computa-
tional complexity. In the GMAL module, the input channel
for the first LUT-SC block in each layer is cin + 3, indi-
cating that the spatiotemporal coordinates of the nodes are
also incorporated as features, which has been verified to en-
hance performance [13]. Note that most backbones inher-
ently possess the ability to output multiscale features (e.g.,
DAGr [13], YOLOX [12], and SODFormer [22]), so the
part from Pooling 1 to Layer 3 can be optionally omitted as
implemented in Sec. 4. This further reduces the model size
and improves inference speed.

E. More Experiments
E.1. Comparison of Training Progress
As described in Sec. 4.2, ACGR integrates frames and
events at the representation stage, eliminating the need for a
two-branch backbone which significantly reduces the model
size and training expense. To confirm this, we compare the

mAP curves evaluated on the validation set during train-
ing for two methods (i.e., DAGr [13] and SODFormer [22])
with and without pretraining, as well as SODFormer us-
ing ACGR, as shown in Fig. 8. Notably, both DAGr and
SODFormer rely on two-branch backbones to extract fea-
tures from each modality separately. From Fig. 8, it is ev-
ident that these two methods converge very slowly with-
out pretraining (i.e., still improving after 150 epochs) and
are inclined to yield sub-optimal convergence. Only by
pretraining the unimodal branches as [13] can these two-
branch multimodal models fully leverage their potential per-
formance benefits. In contrast, the ACGR requires only
a single-branch backbone and achieves multimodal fusion,
converging rapidly to the optimum without any pre-train
and further enhancing performance through the proposed
modules. In summary, our ACGR makes the end-to-end
training of multimodal models more efficient.

E.2. Object Detection on PKU-DAVIS-SOD
The PKU-DAVIS-SOD dataset [22] is a multimodal ob-
ject detection benchmark collected using a DAVIS346 cam-
era, which captures synchronized RGB frames and event
streams. Both of them are recorded at 346×260 spatial res-
olution with an RGB frame rate of 25 Hz. The dataset cov-
ers diverse scenarios including normal, low-light, and fast-
motion conditions, with precise manually labeled bounding
boxes based on RGB frames including three categories (i.e.,
car, pedestrian and two-wheeler). Consisting of 220 hybrid
driving sequences, this dataset contains 276k RGB frames
and 1080.1k bounding boxes, being the largest neuromor-
phic multimodal object detection dataset to date.

To further investigate the generalisability of ACGR on
other datasets, we carry out comparisons between our meth-
ods and state-of-the-art methods on the PKU-DAVIS-SOD
dataset as shown in Table 10. In particular, we compare
our methods (i.e., DAGr [13] and SODFormer [22] using
ACGR) with ten unimodal detectors, including four frame-
based detectors (i.e., Faster R-CNN [33], YOLOv3 [9],
Deformable DETR [38], and LSTM-SSD [25]) and four



Table 10. Comparison with state-of-the-art methods on the PKU-DAVIS-SOD dataset [22].

Modality Method Representation Backbone Temporal mAP50 Runtime (ms)

Frame

Faster R-CNN [33] Frame ResNet50 × 0.443 11.6
YOLOv3 [9] Frame Darknet53 × 0.426 7.9

Deformable DETR [38] Frame Deformable DETR × 0.461 21.6
LSTM-SSD [25] Frame SSD

√
0.456 22.4

Event

NGA-event [20] Voxel grid Darknet53 × 0.232 8.0
YOLOv3 [9] Reconstructed image Darknet53 × 0.244 178.5

Faster R-CNN [33] Event image ResNet50 × 0.251 11.5
Deformable DETR [38] Event image Deformable DETR × 0.307 21.6

LSTM-SSD [25] Event image SSD
√

0.273 22.7
ASTMNet [24] Event embedding Rec-Conv-SSD

√
0.291 21.3

Frame+Event

MFEPD [21] Frame+Event image Darknet53 × 0.438 8.2
JDF [23] Frame+Channel image Darknet54 × 0.442 8.3

DAGr [13] Frame+Graph ResNet50+DAGr-s
√

0.492 18.5
SODFormer [22] Frame+Event image STE+TDTE

√
0.504 39.7

DAGr [13] ACGR DAGr-s
√

0.504 6.9
SODFormer [22] ACGR STE+TDTE

√
0.519 16.8

Frame-based Event-based DAGr SODFormer Ours Ground truth

Figure 9. Representative instances of different object detection methods in challenging scenarios on the PKU-DAVIS-SOD dataset [22].
The two rows display the detections in low-light and high-speed motion blur scenarios.

event-based detectors (i.e., NGA [20], reconstructed im-
age [32] for YOLOv3 [9], event image [27] for Faster R-
CNN [33], Deformable DETR [38] and LSTM-SSD [25],
and ASTMNet [24]), and four state-of-the-art multimodal
approaches (i.e., MFEPD [21], JDF [23], DAGr [13], and
SODFormer [22]). As presented in Table 10, our meth-
ods consistently outperform all the ten unimodal baselines,
achieving a mAP50 improvement of at least 4.3%, and
demonstrate significant advantages over multimodal base-
lines, with mAP50 gains of 1.2% and 1.5% for DAGr and
SODFormer, respectively. Additionally, the ACGR reduces
inference time by 0.37× on DAGr and 0.42× on SOD-
Former compared to their baselines, verifying the ability of
ACGR to increase efficiency. As illustrated in Fig. 9, we
further present a comparison of detections under challeng-
ing scenarios (i.e., low light and high-speed motion blur)
from the PKU-DAVIS-SOD dataset. These results further
demonstrate the reliability of the ACGR.

Table 11. The contribution of each component to our ACGR on
the MVSEC dataset [36].

Method Event ACAM Ld Abs.Rel.↓ RMS↓ RMSlog↓
Baseline 0.306 7.921 0.378

(a)
√

0.279 7.677 0.363
(b)

√ √
0.270 7.536 0.349

Ours
√ √ √

0.256 7.113 0.331

E.3. Contribution Validation on Depth Estimation

To further validate the effectiveness of the proposed mod-
ules beyond the object detection task, we adopt the same
experimental setup as in the first paragraph of Sec. 4.4 and
compare the performance of the four methods on the depth
estimation task using the MVSEC dataset [36]. As shown
in Table 11, methods (a), (b), and our ACGR also show
progressive improvements on the MVSEC dataset, confirm-
ing the effectiveness of our designs on the depth estimation



Table 12. Comparison between processing frames using CNNs
and ACGR. The backbone utilized here is YOLOX [12].

Method mAP mAP50 Params Runtime (ms)
ResNet18 0.264 0.476 3.41M 16.6
ResNet50 0.305 0.511 9.25M 25.7

ACGR 0.313 0.513 0.34M 13.2

task. More specifically, compared to the baseline, meth-
ods (a), (b), and our ACGR reduce the Abs.Rel. metric
by 0.027, 0.036, and 0.050, with similar improvements ob-
served in the RMS and RMSlog metrics. In other words, it
indicates that our ACGR is an adaptive representation suit-
able for multi-tasks.

E.4. Why Using Graph for Frames.

Although the benefits of ACGR have been validated through
various experiments, some might question the reasoning
behind representing frames as graphs, especially since
frame operations resemble those in CNNs, as discussed in
Sec. 3.1. To address this, we outline three key reasons for
choosing graphs as the representation for frames.

First, there has been some research on processing frames
using GNNs. Vision GNN [19] represents an image as a
graph of patches, aggregating contextual information more
flexibly and achieving state-of-the-art performance on im-
age recognition and object detection tasks. CoCs [26]
treats an image as unorganized points and uses a simplified
clustering algorithm to extract features with notable inter-
pretability. While research in this direction is still limited,
it holds considerable potential for future advancements.

Second, representing frames as graphs enables more ef-
fective cross-modal interaction with events. Indeed, DAGr
adopts a paradigm where CNNs process frames and GNNs
handle events, yet allowing only unidirectional cross-modal
interactions from frames to events, which is likely due to the
absence of efficient sampling algorithms. Moreover, simple
concatenation of frame and event features leads to inade-
quate interaction and reduced robustness. In contrast, the
ACGR employs a GNN to learn adaptive weights for cross-
modal interaction which enhances feature extraction.

Finally, we use the first three layers of ResNet18 and
ResNet50 to replace the corresponding layers to extract
frame features and compare the results with ACGR in
Table 12. The results show that ACGR achieves a sig-
nificant 4.9% mAP improvement compared to ResNet18,
demonstrating its superior capability in extracting frame
features. When compared to ResNet50, ACGR maintains a
0.8% mAP advantage due to its mutual interaction which
suggests that its feature extraction ability is comparable to
ResNet50, while significantly reducing model size and in-
ference time. Overall, ACGR outperforms the CNN+GNN
approach in terms of both performance and efficiency.
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