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1. Implementation Details with FloorPlan-60K Data
BADGR is trained using a 2D ‘cleanup’ layer of floor plans, where larger spaces are represented by unions of multiple
partially annotated room shapes, following the annotation approach of ZInD [2]. Panorama poses are randomly sampled
within each room. For each input image, BADGR simulates data with a CUDA-based 1D renderer, given floor plan layouts
and a sampled camera pose. The renderer operates on connected rooms through doors, omitting door polygons and matching
wall segments along the front and back planes. Random masking is applied on {B̂i} and M to occasionally bypass the BA
layer for selected image columns. During diffusion training, scenes are rotated by [0◦, 90◦, 180◦, 270◦]. For evaluation, we
use the ZInD test set (275 floor plans), with initial scenes, floor boundary depths, and column-to-wall assignments estimated
from real panorama images, as detailed in Section 8.1 of the main paper.

BADGR has a capacity of 300 walls and 30 panoramas, which is selected to accommodate 99% of the floor plans from
FloorPlan-60K data. It is trained with a batch size of 48, and with a learning rate of 10−4 for 140 epochs, 10−5 for 50
epochs, and 10−6 for 50 epochs by stepwise decay. BADGR is trained for the last 20 steps of a 1000-step diffusion process,
using a second-moment schedule sampler for time t. Ordinary Differential Equations (ODE) sampling [8] is used during
the BADGR inference process. Training peaks at 55GB GPU memory usage on a single GPU. During inference, BADGR
processes a batch size of 1 in approximately 25 seconds on a CPU-only Apple M1 MacBook Pro with 32GB of memory, and
around 4.0 secs on an A100 GPU.

2. Cross dataset training and validation
We additionally trained a BADGR model of a max capacity of 300 walls and 30 cameras with the RPLAN training set, and
with a similar settings of sampling camera positions for generating simulated floor boundaries and column-to-wall assign-
ments. This model is evaluated on the ZInD test set. The results are listed in Table 1 alongside with existing results for
comparison. Although BADGR trained with RPLAN dataset doesn’t produce similar or higher accuracy than BADGR trained
with FloorPlan-60K dataset, it still outperform the CovisPose+ and BA-Only baselines. This trend is expected as RPLAN
contains Manhattan floors only and overall have less rooms and panoramas during training.

Table 1. Pose and layout errors tested on the ZInD dataset, trained with various datasets. Row 3 of each block presents additional results
compared to the main paper. Mn, Med, and Std denote mean, median, and standard deviation, respectively. We also report the 90th
percentile (p90) of the absolute translation errors for the estimated camera poses.

Imgs/
Rm Methods Training Set Camera Translation(cm) Visible walls (cm)

Mn Med Std p90 Mn Med Std p90

0.6

CovisPose+ ZInD 20.7 15.7 12.0 33.6 11.5 6.9 10.5 26.0
BA Only N/A 19.1 12.2 10.9 32.7 12.8 6.8 11.9 29.3
BADGR RPLAN 14.7 11.4 8.0 24.0 9.4 5.8 8.6 20.6
BADGR FloorPlan-60K 12.2 9.5 7.2 18.5 7.1 4.5 6.7 15.3

1

CovisPose+ ZInD 19.7 15.6 11.8 33.7 12.3 7.0 10.8 27.4
BA Only N/A 17.6 12.6 12.0 34.2 12.6 6.7 11.4 27.5
BADGR RPLAN 15.1 11.1 8.5 26.5 9.2 5.9 8.8 20.6
BADGR FloorPlan-60K 11.2 8.8 6.5 18.6 7.0 4.6 6.6 15.8

2

CovisPose+ ZInD 17.9 14.5 10.2 30.8 12.0 7.0 9.0 26.0
BA Only N/A 14.3 10.8 9.2 30.1 10.5 6.2 9.9 23.3
BADGR RPLAN 14.1 10.5 8.6 27.8 9.1 5.6 8.7 20.1
BADGR FloorPlan-60K 10.7 8.9 6.0 17.1 6.4 4.4 5.9 13.9

3

CovisPose+ ZInD 18.1 14.8 10.5 31.6 12.3 7.2 10.2 26.9
BA Only N/A 13.4 10.7 8.2 30.5 10.6 6.2 9.0 22.1
BADGR RPLAN 13.3 10.2 7.7 22.9 9.4 5.9 8.7 21.1
BADGR FloorPlan-60K 10.6 8.9 6.0 17.5 6.6 4.3 6.0 14.6



3. Reprojection Errors
Reprojection errors are reported in Table 2 to measure the view-consistency between the floor boundary projected from the
predicted layout and poses and the per-image estimations, similar to the blue and green lines in the bottom-right images of
Figure 1 of the main paper. The stats are computed from the per-column reprojection errors across all wall-assigned image
columns, which is defined in Algorithm 1 of the main paper.
Table 2. Reprojection errors (L1 distance by pixel relative to an image size of 256 × 512) for wall-assigned columns, which measures
view-consistency compared to the predicted floor boundary. Alongside Table 1 of the main paper, we observe that while BADGR sometimes
produces higher re-projection errors than BA-Only, it consistently achieves lower layout and pose errors. This suggests that reprojection
error influences accuracy but is not the sole factor in achieving high reconstruction accuracy. The stats are collected similarly to those from
Table 1 of the main paper.

Img/Rm 0.6 1 2 3
Method Mn Med Std p90 Mn Med Std p90 Mn Med Std p90 Mn Med Std p90

CovisPose+ 1.38 0.92 1.81 2.77 1.52 0.95 2.08 3.05 1.69 1.03 2.40 3.67 1.79 1.05 2.57 3.93
BA-Only 0.70 0.29 1.21 1.64 0.78 0.32 1.46 1.88 0.81 0.39 1.48 2.07 0.89 0.39 1.45 2.06
BADGR 0.65 0.31 1.17 1.36 0.75 0.32 1.34 1.77 0.78 0.35 1.37 1.81 0.81 0.36 1.33 2.04

GT Scene + Predicted Boundary 0.91 0.82 0.56 2.77 0.90 0.80 0.56 1.55 0.89 0.78 0.56 1.56 0.89 0.77 0.57 1.56

As Table 2 shows, overall reprojection error increases with the number of input images. This is caused by the accumu-
lating pose errors and inconsistencies in floor boundary estimates across overlapping regions. Both BA-Only and BADGR
consistently show lower reprojection errors compared to CovisPose+. In most cases, BADGR reports slightly lower repro-
jection errors than BA-Only, likely because BA-Only can get stuck in local minima of the loss function and uses a PyTorch
implementation that also considers memory and speed. In this implementation, adjustments are computed at per-column level
and averaged to update poses and walls, rather than optimizing the total reprojection error across all columns.

4. Coarse Scene Initialization for Inference
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Figure 1. Overview of coarse scene initialization.

Initial Poses From input panoramas {P i}, a modified CovisPose model [5] is executed exhaustively on each pair of panora-
mas from the same floor. This model has the same exact architecture as the original CovisPose model predicting: 1) relative
camera pose Ẽ(i,j) ∈ SE(2), 2) floor boundaries {B̃i}, 3) cross-view co-visibility, angular correspondences {α̃i,j}, {φ̃i,j}.
It additionally predicts binary classification of room corners {Ṽi} for each column. The model is trained on the ZInD dataset
[2] with the same image pairs as [5] and an additional corner loss function similar to that of [9]. Pose pairs of co-visibility
score greater than 0.1 are selected to create a minimal spanning tree of the pose graph using a greedy algorithm, similar to [6].
Prior to computing global poses Ẽi, Ẽi,j are corrected through axis alignment with a 45° interval using predicted vanishing
angles [12].



Initial Walls The per-panorama floor boundary {B̂i} is segmented with room corners {V̂i}. Inlier boundary points are then
extracted with RANSAC, and initial wall parameters (

−−→
vim,k, bim,k) are computed for each local wall detected from panoramas

P i. Voting-based heuristics are used to match inlier boundary points, which maps to per-panorama local line segments,

between panorama pairs using {α̃i,j}, {φ̃i,j} and (
−−→
vim,k, bim,k). Pairwise local line matches are aggregated into a unique

global wall identity for wall lm,k shared across P i. The estimated wall parameters, i.e. (−−→vm,k, b̂m,k), are computed with
linear regression, where −−→vm,k is selectively axis-aligned with a 45◦ interval. Only wall angles closer to 10◦ to the vanishing
directions, e.g. 0, 45, 90, 135, are corrected. Finally, an annotator uses a graphics interface to: 1) provide global wall
connectivity (shown as arrows in the bottom right image of Figure 1), and 2) add missing room corners with their rough
initial positions with guidance from the images and topdown projected floor boundaries (dotted lines in the bottom right
image of Figure 1). The number of room corners and wall orientations are static input to BADGR.

During testing, a subset of panoramas are selected as described in Section 8.1 of the main paper and Section 1 of the
Supplement. To generate the coarse initial layouts, we use the connectivity of the annotated global scene as discussed above,

re-compute parameter (
−−→
vim,k, bim,k) of visible walls using the inlier boundary point from the selected panoramas, and inherit

the parameters of invisible walls from the initial coarse scene generated with all available panoramas from the ZInD dataset.
Only rooms with visible walls are included in the coarse initial layouts. PolyDiffuse [1] also uses simple annotation during
initialization. Our paper focuses on the difficult step of global refinement. Automating this annotation is future work to
automate an end-to-end pipeline.

5. Discussion
PuzzleFusion (PF) [4] and Extreme SfM (E-SfM) [7] also produce floor plan layouts and camera poses. Here we provide
a discussion on their differences to BADGR. Both PF and E-SfM estimate the rotation and translation of given unposed
non-deformable room layouts by solving jigsaw puzzles. Camera poses are then inferred from the puzzle solution. This has
different objectives than ours: 1) within the same room their relative positions among individual walls and multiple camera
poses stay unchanged; 2) neither method uses information from a set of horizontal-facing images without precise poses as
input constraints to guide optimization for view-consistency. Both can be used for initialization of BADGR like CovisPose.
Code and weights of PF trained on RPLAN aren’t publicly available. We contacted the authors, and the code no longer
runs. E-SfM takes hours or even days to process a single house [4], so neither can be used as baselines. BADGR solves
a different task as we are deforming room shapes. Instead, we simulate BADGR refining PF-initialized layouts by adding
Gaussian noise (10.55 Mean Positional Error in pixels (MPE) matches PF) to room translations, with relative poses among
cameras and walls within each room given for initialization. BADGR reduces the MPE↓ of room placement from 10.55 or
4.1% (normalized by 256× 256 pixel resolution) (full RPLAN) to 0.93% (77.3% lower), calculated by average shift of each
vertex. We also report 0.98%, 1.45% mean translation errors in layout and poses. MPE of E-SfM is only reported for small
RPLAN as 29.44 or 11.5% [4].

GraphCovis [6] and PanoPose [10] didn’t publicly release their code. GraphCovis estimates global poses among up-to-5
input panorama images. We compared the pose errors of BADGR with GraphCovis under the similar input settings originally
evaluated on ZInD [2] in table 3. It demonstrates BADGR’s robust performance among different sizes of homes and missing
room scenarios.
Table 3. Statistics of absolute translation error and absolute rotation error on group of three, four, and five panoramas for GraphCovis
(GC) and BADGR. The accuracy of GraphCovis is imported from Table 1 of [6].

Group-Size
# imgs

GC Rot ↓ (◦) BADGR Rot ↓ (◦) GC Transl. ↓ (cm) BADGR Transl. ↓ (cm)
Mn Med Std Mn Med Std Mn Med Std Dist (cm) Med Std

3 2.00 0.85 9.15 0.25 0.20 0.28 8.1 3.8 29.2 9.2 6.1 5.9
4 3.19 0.94 13.36 0.26 0.22 0.30 15.3 6.1 43.0 10.6 6.1 6.0
5 3.29 1.07 12.04 0.25 0.19 0.30 17.2 8.2 38.4 10.4 6.3 6.7

6. Failure Cases
We present three failure cases to highlight the challenges and opportunities for BADGR. Overall, BADGR achieves high
accuracy when input images are minimally-connected by covisible walls through column-to-wall assignments from the initial
coarse scene. However, since BADGR is trained on simulated panorama poses and column-to-wall assignments, the model
can struggle when faced with scenarios outside the training distribution. An example is shown in Figure 2, where the initial
scene contains large errors over wide areas, and the column-to-wall assignments fail to establish critical covisible walls
between panoramas. This underscores the need for future development of an end-to-end initialization method to establish
global column-to-wall assignments.



Figure 2. Failure case example caused by errors in coarse scene initialization. The colored lines in the images on the right represent
estimated floor boundaries, with colors indicating their assigned unique global wall id. The heuristic failed to match two wall segments
(highlighted in rectangles) using dense column correspondences and floor boundaries from the CovisPose model. Additionally, the large
initial error in the highlighted section (highlighted in rectangles) may fall near the boundary of the 20-step truncated diffusion data distri-
bution, contributing to the issue.

BADGR relies on floor boundaries for positional information along the normal direction of the target surface. This explains
the failure case in Figure 3, where the wall length is estimated incorrectly due to a lack of guidance to the model. Future work
could incorporate cues from wall junctions, similar to [9, 11], or encode pixel positions of pre-assigned columns to better
constrain visible walls and infer invisible wall positions.

Figure 3. Failure case example where the highlighted wall is predicted with an incorrect length due to the limited image column coverage.
The colored lines in image views represent similarly as in Figure 2.

BADGR assumes consistent floor heights throughout the area. When this assumption is violated, such as with a sunken
floor (Figure 4), planar BA may place walls farther than their actual positions. Future work may include extending BADGR
to represent varying camera height and wall heights, and expanding the training data to cover this issue.

Figure 4. Failure case example due to inconsistent floor heights. The colored lines in image views represent similarly as in Figure 2.

7. More Qualitative Results
The reprojected wall lines in the image are drawn with a thickness equal to 1.1% of the image height. This thickness can
cover significant floor distances, especially when walls are near the image center. For example, at a pitch angle of 30° (floor
distance of 0.58 camera heights), the line covers 4.5% of the camera height; at 45° (1 camera height), it covers 7.4%; at 60°
(1.73 camera height), 14.7%; and at 75° (3.73 camera height), 55.2%. While the blue and green lines represented in small
images sometimes appear to overlap, particularly for walls farther from the camera, BADGR processes continuous inputs and
outputs for coordinates, enabling higher precision. See quantitative results for more precise details.
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Figure 5. More qualitative results trained on FloorPlan-60K dataset and tested on ZInD dataset (page 1), with input densities at a maximum
of 2 input images from each input partial room. The topdown views from left to right are before, after BADGR optimization and the ground
truth.
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Figure 6. More qualitative results trained on FloorPlan-60K dataset and tested on ZInD dataset (page 2), with input densities at a maximum
of 2 input images from each partial room. The topdown views from left to right are before, after BADGR optimization and the ground truth.
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Figure 7. More qualitative results trained on FloorPlan-60K dataset and tested on ZInD dataset (page 3), with input densities at a maximum
of 1 input images from each partial room. The topdown views from left to right are before, after BADGR optimization and the ground truth.



Figure 8. Qualitative results trained and tested on RPLAN dataset (page 4), with input densities at one input image from each partial room.
The topdown views from left to right are before, after BADGR optimization and the ground truth. The initial state is created by adding
Gaussian noise from 20-step diffusion q-sampling [3] into the ground truth poses and layouts. Details see Section 8.2 of the main paper.
This figure demonstrates BADGR’s capability to refine initial scenes with much higher noise than those from the ZInD test cases.
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