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Appendix A: Detailed discussion on data contami-
nation

In the area of AD, there exist some works studying the issue
of contaminated training data [18, 22, 35]. Among these
limited works, the IAD method [18] particularly focuses on
the intricacies of the weight function design to be used as
a model-agnostic AD with contaminated training data. To
manage and adjust the weight for each sample throughout
the rounds, IAD employs a weight function, based on the
sigmoid function, that correlates the anomaly scores from
the current round with the weight for the subsequent found.
Despite its improvement and some similarities to our method,
the IAD method unfortunately grapples with multiple lim-
itations. First, the design of the weight function is strictly
(or fatedly) reliant on the median statistics of the anomaly
scores, (implicitly) presupposing a fixed contamination rate
wherein exactly half of the dataset’s samples are contami-
nated, although the actual proportion of contamination could
be any value (normally unknown and possibly small) within
the range [0, 0.5) in practice. The assumption restricts the
method’s flexibility and applicability across varied scenarios
that exhibit diverse contamination ratios, leading to eventual
performance degradation because such design can inadver-
tently suppress the feature learning of genuine samples dur-
ing training. Also, in the IAD, the transition of the weight
function from its initial state ({ = 0) to subsequent training
rounds (t = 1,2, - - ) is executed hastily, potentially leading
to an excessive counterbalancing effect that might impede
the assimilation of features from anomaly samples. In addi-
tion, the IAD framework incorporates a termination criterion
based on a thresholding technique that evaluates the rank of
the matrix composed of the anomaly scores for all samples
within the dataset, which can be complex. Furthermore, it is
worth clarifying that the IAD approach remains incompatible
with recently proposed OOD detection models that incorpo-
rate synthetic negative samples, a burgeoning and critically
important area of research within this domain, meaning that
it cannot be model-agnostic for OOD detection. Last but not
least, the IAD does not have any mechanism to estimate the
contamination rate within the training dataset.

In general, directly applying AD methods to OOD de-
tection is ineffective because they pursue different goals,
under different assumptions about data, and adopt different
techniques evaluated by different metrics. AD’s main goal
is to identify rare, unusual instances in a known distribu-
tion, while OOD detection aims to distinguish samples that
do not belong to the training distribution. This difference
in goals leads to different assumptions about the data: AD
assumes that anomalies are rare instances within a single,
known distribution, whereas OOD detection assumes those
samples from unknown (or previously unseen) distributions.
These differences then affect the performance metrics: AD
mostly adopts precision and recall for rare events within a
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dataset, while OOD detection typically uses AUROC. In
terms of methodologies, AD techniques focus on identifying
low-density regions within the training distribution; how-
ever, OOD detection employs techniques such as contrastive
learning, negative sampling, etc, to accurately refine the
boundary between ID and OOD data. AD methods typically
lack the capability to handle samples outside the training
distribution. Overall, due to those differences, AD methods
are often less effective for OOD detection. Furthermore,
model-agnostic AD methods within AD contexts are often
not model-agnostic for OOD detection.

In addition, our investigation also partly intersects with
the domain of “deep learning with noisy labels.” However,
the “label noise” is different from the “data contamination”
considered in this work. “label noise” exists within the ID
classes of the ID dataset [1, 10, 16, 44], which typically
results in mislabeled samples in the datasets [36]. Within
this sphere, strategies such as regularization [37, 46], deploy-
ment of robust loss functions [17, 48], and sample selection
mechanisms [10, 38] are prevalently adopted to mitigate the
effects of label noise during training.

Compared with “deep learning with noisy labels”, our
task is more practical in real-world applications. In ours,
“data contamination” refers to OOD samples included in the
training dataset, which is a common issue when training
datasets are constructed from real-world noisy, heteroge-
neous sources. For example, if ImageNet-1k is entirely used
as the training dataset, its OOD portion can be determined
only when an OOD dataset is specifically defined. This is-
sue was extensively studied [4], but from the perspective of
testing (not training as ours): With ImageNet-1k being train-
ing dataset and Places being test OOD dataset—a common
setup—the percentage of ID samples present in the OOD
dataset is as high as 59.5% (Table 1 of [4]), resulting in an
FPR score increase up to 20% (Figure 3 of [4]), also provid-
ing similar trends for other OOD datasets. [4] claims that
(i) high ID-OOD contamination is common and (ii) its huge
negative impact. While the solution of [4] was to manually
clean up datasets, our approach is (arguably) more practical:
mitigate ID-OOD contamination through intelligent training.

Another category of partly related research works is
Vision-Language Models (VLMs). VLMs like CLIP have
demonstrated strong performance in image classification
tasks, thanks to the huge amount of data that is used in their
pre-training stage [27]. As a consequence, it might seem that
this kind of pre-trained VLMs is the best choice for OOD
detection on the contaminated dataset, as they do not need to
be trained on the contaminated ID dataset, thus preventing
performance degradation from data contamination.

However, VLM-based methods still face major limita-
tions for OOD detection on the contaminated dataset. Let’s
take CLIP, the most popular VLM for OOD detection, as
an example. First of all, CLIP-based methods are extremely



resource-intensive, which are potentially unsuitable for on-
device Al, AloT, or tiny Al, which is one of the most popular
scenarios for OOD detection in real-world applications. In
contrast, our framework seamlessly integrates with models of
any size. In addition, though CLIP achieves satisfactory over-
all accuracy, its performance is highly inconsistent across
categories, with some classes exhibiting even 0% accuracy
[30]-serious concerns for its suitability for risk-sensitive
applications, e.g., healthcare. By contrast, our framework
integrates effortlessly with any detectors optimized for spe-
cific applications. Besides, CLIP-based detection relies on a
predefined set of explicit ID class labels, while such details
of the dataset are often unavailable in real-world OOD detec-
tion, e.g., medical images labeled as “normal”. In contrast,
our framework performs seamlessly with any training dataset
without requiring such detailed knowledge.

Appendix B: Details of weight function design for
our methods

In our proposed approach, we introduce a novel weight func-

tion that correlates the normalized' OOD score sgt) with
()

the weight w, ~ and pioneers an OOD percentage estimation

mechanism Zf’étc))D, which is the first of this field. This inno-
vative framework facilitates the iterative segregation of OOD
samples within a contaminated dataset. Details on the idea
of the weight function design are illustrated in the following
subsections.

B.1: Weight function design for our method for OOD
detection models that do not use negative samples

The conceptual architecture of our proposed weight function
for OOD detection models that do not use negative samples
is illustrated in Figure 3. Drawing inspiration from the unit
step function, depicted in Figure 3(a), our design delineates
discrete intervals for ID and OOD samples. To refine the
weight, we have adopted a modified unit step function that
ensures a bifurcated treatment of ID and OOD samples via
constant functions—specifically, 1 for ID and 0 for OOD, as
evidenced in Figure 3(b).

Nevertheless, the mere alignment of ID and OOD sample
ratios within the intervals of the weight function does not
guarantee enhanced OOD detection fidelity. The precision

'If the model does not inherently produce normalized OOD scores, a
normalization process would be applied:

7 - Toa(s) |
T}Ef;h(s) - Tlgxzz(s)

®) denote the post-normalized and pre-normalized OOD

®) 5(

;  and §;
scores, respectively, and T]Eii, (s) and T}Eit;h (s) denote the lower and higher

0OOD score thresholds in this normalization.

where s
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of sample categorization is augmented when OOD scores
are markedly delineated from the ID/OQOD interface. The
proximity of OOD scores to this demarcation attenuates the
reliability of the predictions. In anticipation of such clas-
sification inaccuracies, we have devised a nuanced weight
function, embodied by the orange trajectory in Figure 3(c).
This function tempers the influence of scores proximal to the
boundary, thereby mitigating misclassification risks while
preserving the equilibrium of ID and OOD sample propor-
tions.

The application of the nuanced weight function is most
efficacious during the terminal epoch of training (1 < t <

END), leveraging an estimated ID ratio ]51%) derived from
the cumulative insights accrued throughout the training con-
tinuum. Initial epochs employ a uniform function (dark blue
in Figure 3(d)) to impartially consider all samples, mirroring
the inherent unsupervised learning paradigm at the inception
of training.

Another pivotal element of our methodology is the pro-
gression from the initial uniform state to the ultimate nu-
anced weight function during the intermediate epochs (1 <
t < END). We advocate for a phased evolution from a
uniform to a more customized weight curve, as signified by
the color gradient transitioning from blue to light blue in
Figure 3(d). A corpus of research [1, 10, 16, 29, 34, 44] sug-
gests that deep learning models are predisposed to initially
prioritize elementary, discernible features, subsequently ad-
vancing to more intricate features as training progresses.
Given the prevalence of ID samples within contaminated
datasets, these typically constitute the focal point of early
training, obviating the necessity for immediate recalibra-
tions of the weight function to counteract the influence of
OOD samples, as posited by the IAD approach. Therefore, a
phased transition aligns more congruently with the model’s
incremental refinement in learning and reliability during the
training phase for OOD prediction.

B.2: Weight function design for our method for OOD
detection models that use negative samples

The logic flow of our proposed weight function for our
method for OOD detection models that use negative sam-
ples is illustrated in Figure 4. Conventional OOD detection
paradigms predominantly leverage synthetic negative sam-
ples, fabricated from ID data, to augment detection capabil-
ities, premised on the notion of an unpolluted ID training
subset. In stark contrast, our methodology acknowledges the
prevalent issue of dataset contamination, wherein authentic
OOD samples are intrinsically embedded within the training
corpus. By capitalizing on these genuine OOD instances as
negative exemplars, our method circumvents the synthesis
of artificial negatives, thereby bolstering the veracity and
efficacy of the training regimen. This strategic adjustment
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Figure 3. Design of the weight function in our proposed method for OOD detection models that do not use negative samples. (a) The
unit step function, which inspires our method. (b) The ideal weight function for this method, a reverse and shift variant of the unit step
function. It bifurcates all samples into two groups based on the percentage of ID and OOD samples, assigning disparate weights to them: 1
for ID samples and O for OOD samples. (c) The realistic weight function (in red), a curve function that maintains the same midpoint as the
ideal weight function. (d) Transition of our proposed weight function from the beginning (¢ = 0) to the end (¢ = END) of training. At
the beginning, the weights of all samples are uniformly initiated at 1 (dark blue line). The progressively brighter blue curves illustrate the
transition of the weight function throughout the training phases (1 < ¢ < END), with the intensification in brightness correlating with the
progression in training rounds. The curve in red illustrates the weight function’s ultimate configuration at the end of training (¢ = END).

not only equips the models with the acumen to accurately
discern authentic OOD samples during the training phase
but also markedly enhances their discriminative prowess be-
tween ID and OOD instances, culminating in an optimized
detection performance.

Within the IAD framework [18], the conventional weight
function constrains the weight w® to be strictly non-
negative (e.g., [0, 1]), a constraint that is inherently aligned
with the treatment of positive samples. We introduce a pio-
neering weight function, reminiscent of the unit Sign func-
tion, which extends the weight domain to encompass the
range [—1, 1], as illustrated in Figures 4(a) and 4(b). This in-
novation permits the assignment of negative weights to OOD
samples while preserving positive weights for ID samples,
thereby expanding the functional ambit and augmenting the
adaptability of the model. This enhanced weight function fa-
cilitates the seamless incorporation of negative weights into
the loss computations of OOD models for negative samples.

In alignment with the theoretically ideal weight function
postulated in this method, we introduce a weight function
when the backbone OOD detection model could produce reli-
able OOD scores, as depicted in Figure 4(c). This function is
characterized by a curvilinear contour proximal to the demar-
cation between ID and OOD samples, designed to mitigate
classification inaccuracies when OOD scores approximate
this critical juncture, thus reinforcing the precision of predic-
tions.

However, the backbone OOD detection model is only
likely to produce reliable OOD scores at the later stage of
training, which indicates that the transition mechanism by
7® remains imperative. Thus, the final weight function
for backbone OOD detection models that utilize negative
samples is also equipped with the transition mechanism by
78, as depicted in Figure 4(d).

By instituting this proposed weight function, we also
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empower backbone OOD detection models to efficaciously
leverage real OOD samples as negative instances, a feat tra-
ditionally exclusive to the realm of synthetic negatives. This
innovation not only broadens the scope of our methodology
in the context of contaminated datasets but also substantially
elevates the precision and operational efficiency of OOD
detection models.

Appendix C: Dataset pre-processing

In this study, we conformed to the popular dataset setups in
existing works of the OOD detection field. Our experiments
encompass an array of datasets, which include grayscale
images datasets (MNIST, EMNIST, and FMNIST), color
images datasets (CIFAR-10, SVHN, GTSRB, and Celeb_A).
Furthermore, we have incorporated larger-scale color im-
age datasets such as CIFAR-100, Mini-ImageNet, Tiny-
ImageNet, ImageNet-1k, iNaturalist, and Openlmage-O.
Most of the datasets in grayscale and natural images were
retrieved either directly from their official websites or us-
ing the built-in TensorFlow implementation and were used
without further modifications. Specifically, for the EMNIST
dataset, we selectively utilized the “’Letters” partition. The
datasets SVHN and Celeb_A were subjected to a cropping
pre-processing step to ensure the centralization of the pri-
mary subjects within the resultant images. To achieve uni-
formity in image resolution for CIFAR-100, Tiny-ImageNet,
and Mini-ImageNet, the CIFAR-100 images were upscaled
to a resolution of 64 x 64 pixels from an initial 32 x 32
pixels, aligning with the resolutions of Mini-ImageNet and
Tiny-ImageNet. We also adopt the popular pre-processing
practice for ImageNet-1k, iNaturalist, and Openlmage-O.
For experimental validation, we constituted a validation set
from each dataset, representing 10% of the total image, ex-
tracted from the original training set. Comprehensive details
pertaining to the datasets are delineated in Table 9. To con-
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Figure 4. Design of the weight function in our method for backbone OOD detection models that use negative samples. (a) The unit Sign
function, which inspires our method. (b) The ideal weight function for this method, a reverse and shift variant of the unit Sign function. (c)
The realistic weight function (in red), a curve function that maintains the same midpoint as the ideal weight function. (d) Transition of our
proposed weight function from the beginning (¢ = 0) to the end (¢ = END) of training. At the beginning, the weights of all samples are
uniformly initiated at 1 (dark blue line). The progressively brighter blue curves illustrate the transition of the weight function throughout the
training phases (1 < ¢ < END), with the intensification in brightness correlating with the progression in training rounds. The curve in red
illustrates the weight function’s ultimate configuration at the end of training (¢t = END).

struct the contaminated dataset, a portion of samples from
the OOD dataset are selected to be merged with the samples
from the ID dataset based on each test case. The labels of
the OOD samples are randomly set based on the ID labels.

Appendix D: Utilization of backbone OOD detec-
tion models with our method

D.1: Utilization of DB with our method

For the DB [2] backbone OOD detection model, we employ
a Variational Autoencoder (VAE) [19] as the neural network,
consistent with the neural network selection in the original
DB approach. Specifically, we design three different VAEs
for smaller datasets (grayscale images datasets and color
images datasets with an image size of 32 x 32), slightly
larger datasets (color images datasets with an image size of
64 x 64), and large datasets (color images datasets with an
image size of 224 x 224), as shown in Tables 10, 11, and 12,
respectively. The VAE for smaller datasets, as specified in
Table 10, mirrors the convolutional VAE architecture utilized
in DCGAN [26], whereas the VAE described in Table 11
and 12 features enhanced depth and capacity in its encoder
and decoder structures, optimized for better performance on
larger datasets.

In our experiments with DB as the backbone OOD detec-
tion model, the latent space dimensions were set to 20 for
the smaller VAE and 32 for the larger VAE. With regard to
the selection of the number of filters (nf) and the number of
channels (nc), we standardized nf to 32 and nc to 1 for all
grayscale images datasets, and nf to 64 and nc to 3 for all
color images datasets. Regarding the hyperparameters, we
set the value of a to 12 to modulate the slope of the weight
function. As for the parameter £ in the transition function
7 we set it to be 1.2.

In the training procedure with DB as the backbone OOD
detection model with our method, we adhere to the original
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loss function design in DB, which is the Evidence Lower
Bound (ELBO) loss. Thus, L = Lg1,po is the training loss
used for Equation (1) of the main text. Inference procedures
retain the original DB configuration, employing corrected
log-likelihood, either being corrected analytically or algorith-
mically, depending on the distribution of the decoder in VAE.
Consistent with the DB approach, contrast normalization is
applied during both the training and inference phases.

D.2: Utilization of LReg with our method

For the implementation of the LReg [39] backbone OOD
detection model, we employ the identical neural network
configurations as used in the DB, as detailed in Tables 10,
11, and 12. This approach ensures uniformity in network
architecture and scale across different models, thereby mini-
mizing performance variances that could arise from architec-
tural discrepancies. Consistency was maintained not only in
the neural network setup but also in the selection of dimen-
sional parameters and hyperparameters, mirroring those used
in the experiments with DB. The decoder in the VAE was
configured to follow a categorical distribution, in accordance
with the specifications set forth in the original publication.

In the training phase, we stick to the original design of
LReg and use the same ELBO loss Lgrpo as loss L for
Equation (1) of the main text. During the inference phase,
we adopt the original Likelihood Regret metric in LReg,
which is calculated based on adding a preparatory training
phase of 100 epochs for the encoder, executed before each
sample’s inference.

D.3: Utilization of LRat with our method

In the implementation of the LRat [28] backbone OOD de-
tection model, we use the same neural network setup for DB,
as shown in Tables 10, 11, and 12. The choice of dimension



Table 9. Details of the 13 datasets used in experiments for grayscale images datasets, color image datasets, and larger scale color images
datasets, including the number of train and test samples and resolution.

Dataset Type Number of train samples Number of test samples Resolution (H x W x C)

MNIST Grayscale 54000 10000 32x32x1
Fashion-MNIST Grayscale 54000 10000 32x32x1
EMNIST-Letters Grayscale 79920 14800 32x32x1
SVHN Color 65932 26032 32x32x3
Celeb_A Color 146493 19962 32x32x3
GTSRB Color 35289 12630 32x32x3
CIFAR-10 Color 45000 10000 32x32x3
CIFAR-100 Larger Color 45000 10000 64 x 64 x 3
Mini-ImageNet  Larger Color 45000 10000 64 x 64 x 3
Tiny-ImageNet  Larger Color 100000 10000 64 x 64 x 3

ImageNet-1k Larger Color 1281167 100000 224 x 224 x 3

iNaturalist Larger Color 579184 95986 224 x 224 x 3

Openlmage-O  Larger Color - 17632 224 x 224 x 3

Table 10. Detailed structure of encoder and decoder for the
VAE model on smaller scale datasets: MNIST, Fashion-MNIST,
EMNIST-Letters, SVHN, Celeb_A, GTSRB, and CIFAR-10. nc:
number of channels; nf: number of filters; nz: number of latent
dimensions; BN: batch normalization; Conv: convolution layer;
DeConv: deconvolution layer; ReLLU: rectified linear unit.

Encoder

Input image of shape 32 x 32 X nc
4 x 4 Convyr Stride=2, BN, ReLU
4 x 4 Convayxnr Stride=2, BN, ReLU
4 x 4 Convyxnr Stride=2, BN, ReLU
4 x 4 Convayxn, Stride=1

Decoder

Input latent code, reshape to 1 X 1 X nz
4 x 4 DeConvyx e Stride=1, BN, ReLU
4 x 4 DeConvaxnr Stride=2, BN, ReLU
4 x 4 DeConvy Stride=2, BN, ReLU
4 x 4 DeConvy, Stride=2

parameters in the neural network and hyperparameters in our
method also remains the same as the values in the experi-
ments with DB as the backbone OOD detection model. For
the distribution of the decoder in VAE, we set it to categori-
cal distribution, which aligns with the choices delineated in
the original research.

Regarding the training procedure with LRat as the back-
bone OOD detection model with our method, we stick to
the original design of LRat and use the same ELBO loss
Lg1so as loss L for Equation (1) of the main text for the
standard model. As for the background model in LRat, we
adhere to the prescribed noise corruption technique for VAE
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Table 11. Detailed structure of encoder and decoder for the VAE
model on bigger scale datasets: CIFAR-100, Mini-ImageNet, and
Tiny-ImageNet. Other conventions are the same as Table 10.

Encoder

Input image of shape 64 x 64 X nc
4 x 4 Convyr Stride=2, BN, ReLU
4 x 4 Convaxnr Stride=2, BN, ReLU
4 x 4 Convyxnr Stride=2, BN, ReLU
4 x 4 Convgxnr Stride=2, BN, ReLU
4 x 4 Convigxnar Stride=2, BN, ReLU
4 x 4 Convaxp, Stride=1

Decoder

Input latent code, reshape to 1 X 1 X nz
4 x 4 DeConvigxas Stride=1, BN, ReLU
4 x 4 DeConvgxns Stride=1, BN, ReLU
4 x 4 DeConvyaxnr Stride=1, BN, ReLU
4 x 4 DeConvaxnf Stride=2, BN, ReLU
4 x 4 DeConvy Stride=2, BN, ReLU
4 x 4 DeConvye Stride=2

configurations. Herein, the mutation parameter is designated
as 0.3 for grayscale images and 0.1 for color images. Addi-
tionally, both models incorporate a substantial weight decay
parameter as 100. In the inference procedure, we use the
original Likelihood Ratio metric in LRat, which is calculated
based on the ratio of log-likelihood between the standard
model and the background model.



Table 12. Detailed structure of encoder and decoder for the VAE
model on larger-scale datasets: ImageNet-1k, iNaturalist, and
Openlmages-O. The design of the encoder and decoder are based
on ResNet-18. Other conventions are the same as Table 10.

Encoder

Input image of shape 224 x 224 X nc
7 x 7 Convyy Stride=2, BN, ReLU, MaxPool 3 x 3
ResNet-18 Block 1: 3 x 3 Convyg, Stride=1, Repeated
ResNet-18 Block 2: 3 x 3 Conva xyf, Stride=2, Downsampling
ResNet-18 Block 3: 3 x 3 Convy xpf, Stride=2, Downsampling
ResNet-18 Block 4: 3 x 3 Convgxyf, Stride=2, Downsampling
4 x 4 Convaxpy, Stride=1

Decoder

Input latent code, reshape to 1 X 1 X nz
4 x 4 DeConvgypf, Stride=1, BN, ReLU
4 x 4 DeConv 4 x nf, Stride=2, BN, ReLU
4 x 4 DeConvy x nf, Stride=2, BN, ReLU

4 x 4 DeConvy¢, Stride=2, BN, ReLU

7 x 7 DeConvy, Stride=2

D.4: Utilization of WAIC with our method

For the implementation of the WAIC [7] backbone OOD
detection model, we replicate the neural network config-
uration for DB, as shown in Tables 10, 11, and 12. The
values of dimension parameters in the neural network and
hyperparameters in our method are also the same as in the
experiments with DB as the backbone OOD detection model.
For the distribution of the decoder in VAE, we set it to con-
tinuous Bernoulli distribution, which aligns with the choices
delineated in the original research.

During the training phase with WAIC as the backbone
OOD detection model with our method, we stick to the orig-
inal design of WAIC and use the same ELBO loss Lgr,po as
loss L for Equation (1) of the main text. In the inference pro-
cedure, we use the original inference metric in WAIC, which
is formulated as Eg [log pg(x)] — Varg [log pg(x)], where 0
is the parameter of the decoder in VAE. The mathematical
expectation [Eg and the variance Vary are computed across
an ensemble of six VAEs.

D.5: Utilization of G-ODIN with our method

Unlike the backbone OOD detection models in Appendices
E.1 to E.4, G-ODIN [14] leverages a discriminative classifier.
In the original G-ODIN work, the authors use ResNet-50 as
the neural network. However, to facilitate a more equitable
comparison with the VAE-based backbone OOD detection
models, we opted for discriminative classifiers with a param-
eter count commensurate to those of the VAEs detailed in
Tables 10, 11, and 12. The structural details of the classifiers
for both smaller and larger datasets are presented in Tables
13, 14, and 15, respectively.

In our implementation with G-ODIN as the backbone
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Table 13. Detailed structure of classifier model on smaller
scale datasets: MNIST, Fashion-MNIST, EMNIST-Letters, SVHN,
Celeb_A, GTSRB, and CIFAR-10. FC: fully connected layer. cls:
number of classes. Other conventions are the same as Table 10.

Classifier

Input image of shape 32 x 32 X nc
4 x 4 Convys Stride=2, BN, ReLU
4 x 4 Convaxns Stride=2, BN, ReLU
4 x 4 Convyxnr Stride=2, BN, ReLU
Flatten output to 1D
FC-128, ReLU
FC-cls, Softmax

Table 14. Detailed structure of classifier model on larger scale
datasets: CIFAR-100, Mini-ImageNet, and Tiny-ImageNet. AAP:
adaptive average pooling. Other conventions are the same as Table
13.

Classifier

Input image of shape 64 x 64 X nc
4 x 4 Convys Stride=2, BN, ReLU
4 x 4 Convaxnr Stride=2, BN, ReLU
4 x 4 Convyxnr Stride=2, BN, ReLU
4 x 4 Convgxnf Stride=2, BN, ReLU
4 x4 CODV16><nf Stride=2, BN, ReLU
AAPtol x1
FC-512, ReLU
FC-256, ReLU
FC-cls, Softmax

OOD detection model, the configuration for the number of
filters (nf) and the number of channels (nc) was standard-
ized; we set nf to 32 and nc to 1 for all grayscale image
datasets, and nf to 64 and nc to 3 for all color image datasets.
Regarding other hyperparameters, we set the value of a to
12 to modulate the slope of the weight function, and k to be
1.2 in the transition function 7(*).

In the training procedure with G-ODIN as the backbone
OOD detection model with our method, we adhere to the
original loss function design in G-ODIN, which is the stan-
dard Cross-Entropy loss for discriminative classifier. Thus,
L = Lcg is the training loss used for Equation (1). Fur-
thermore, temperature scaling—a pivotal component of the
original G-ODIN framework—was incorporated into our
training phase. Also, the preprocessing of inputs entails
a comprehensive search operation across the entire valida-
tion set, a process meticulously aligned with the procedural
integrity of the original G-ODIN study. For the inference
procedure, we employ the original inference metric configu-
ration in G-ODIN, which is calculated by max h;, where h;

K2
represents the output of the softmax function of the classifier.



Table 15. Detailed structure of classifier model for OOD detection on large-scale datasets: ImageNet-1k, iNaturalist, and OpenImages-O.

The design of this classifier is based on ResNet-34. Other conventions are the same as Table 13.

Classifier

Input image of shape 224 x 224 X nc
7 x 7 Convyy, Stride=2, BN, ReLU, MaxPool 3 x 3
ResNet-34 Block 1: 3 x 3 Convyy, Stride=1, Repeated 3 times
ResNet-34 Block 2: 3 x 3 Convaxas, Stride=2, Downsampling, Repeated 4 times
ResNet-34 Block 3: 3 x 3 Convaxas, Stride=2, Downsampling, Repeated 6 times
ResNet-34 Block 4: 3 x 3 Convsgxnr, Stride=2, Downsampling, Repeated 3 times

AAPtol x1
FC-1024, ReLU
FC-512, ReLU
FC-cls, Softmax

D.6: Utilization of Energy with our method

Similar to G-ODIN [14], Energy [24] also leverages a dis-
criminative classifier. Thus, we follow the same procedure
as for G-ODIN for the classifier design to facilitate a more
equitable comparison with the VAE-based backbone OOD
detection models. The structural details of the classifiers for
both smaller and larger datasets are presented in Tables 13,
14, and 15, respectively. In addition, the configuration (e.g.,
the number of filters (nf) and the number of channels (NC))
of the neural network is set to be the same as for G-ODIN,
and the choice of other hyperparameters is also the same
as in our experiments with G-ODIN as the backbone OOD
detection model.

In the training procedure with Energy as the backbone
OOD detection model with our method, we adhere to the
original loss function design in Energy, which is a combi-
nation of the standard Cross-Entropy loss for discriminative
classifier and a regularization loss defined in terms of energy.
For the inference procedure, we employ the original infer-
ence metric configuration in Energy, which is their proposed
energy score.

D.7: Utilization of ReAct with our method

As for ReAct [31], we use a similar setup as for G-ODIN
and Energy, which also uses a discriminative classifier. The
structural details of the classifiers for both smaller and larger
datasets are shown in Tables 13, 14, and 15, respectively.
Also, the configuration (e.g., the number of filters (nf) and
the number of channels (NC)) of the neural network is set to
be the same as for G-ODIN and Energy, and the choice of
other hyperparameters is also the same as in our experiments
with them as the backbone OOD detection model.

In the training procedure with ReAct as the backbone
OOD detection model with our method, we adhere to the
original loss function design in ReAct, which is the standard
Cross-Entropy loss for the discriminative classifier. Thus,
L = Lcg is the training loss used for Equation (1). Also,
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the ReAct operation is performed on the classifier after the
training procedure. For the inference procedure, we employ
the original inference metric configuration in ReAct, which
is the softmax score from the classifier.

D.8: Utilization of CSI with our method

For the CSI [33] backbone OOD detection model, we use the
same neural network setup for DB, as shown in Tables 10,
11, and 12. The choice of dimension parameters in the neural
network in our method is also the same as in the experiments
with DB as the backbone OOD detection model. As for the
hyperparameters, we set the value of o to 18 to modulate
the slope of the weight function, and the parameter k in the
transition function 7(*) to be 1.5.

In the training phase with CSI as the backbone OOD
detection model with our method, we choose to keep only
the loss function for ID samples: Lip > 0 and drop the
loss function for OOD samples: Loop < 0 in the origi-
nal CSI study, as we have proposed a weight function (see
Equation (10) of the main text) to expand the range of wgt)
to [-1,1]. Thus, L = Lip = LgLpo is the training loss
used for Equation (1) of the main text. As for the inference
configuration, we retain the original inference metric in the
CSI research, which is formulated by log pg(x) + log pe(Z),
where & = t(Z|z) (z) and t (Z|x) is a randomly selected
data augmentation technique presented in SimCLR [6].

D.9: Utilization of CnC with our method

For the implementation of CnC [11] backbone OOD de-
tection model, we replicate the same neural network setup
for DB, as shown in Tables 10, 11, and 12. Additionally,
the choice of dimension parameters and hyperparameters
is aligned with the experiments using CSI as the backbone
OOD detection model.

During the training procedure with CnC as the backbone
OOD detection model with our method, we choose to also



keep only the loss function for ID samples: Lip > 0 and
drop the loss function for OOD samples: Loop < 0 in
the original CnC study, which is similar to the setup for
CSI. Thus, L = Lip = Lo is the training loss used for
Equation (1) of the main text. Furthermore, we incorporate
the Mix-up data augmentation technique from the original
CnC study. For the inference phase, we use the standard
log-likelihood estimation log py(x) as the inference metrics
for CnC.

D.10: Utilization of VOS with our method

In the implementation of the VOS [9] backbone OOD de-
tection model, we adhere to the same neural network setup
for DB, as shown in Tables 10, 11, and 12. Furthermore,
the dimension parameters of the neural network and the hy-
perparameters are selected to align with those used in the
experiments involving CSI as the backbone OOD detection
model.

In the training phase with VOS as the backbone OOD
detection model with our method, we elect to also keep only
the loss function for ID samples: Lip > 0 and drop the
loss function for OOD samples: Loop < 0 in the original
VOS study, which is similar to the setup for CSI. Thus,
L = Lip = Lg1po is the training loss used for Equation (1)
of the main text. For the inference configuration, we adopt

the design of the original inference metric in VOS research,
log pg (x)
e

which is expressed as ;=157 -

Appendix E: Supplementary results

E.1: Extended comparison results in OOD detection per-
formance

A comprehensive comparison of OOD detection perfor-
mance is shown in Table 16 (for OOD detection models
that do not use negative samples) and Table 17 (for OOD
detection models that use negative samples), including mul-
tiple test cases with varying OOD percentages on the raw
backbone model, backbone model with the IAD method,
and backbone model equipped with our proposed method.
The results indicate that conventional backbone OOD mod-
els experience significant performance declines when con-
fronted with a contaminated dataset, even at a very small
Pgop = 1%. As detailed in Table 16, our method demon-
strates superior performance in comparison to the IAD ap-
proach across a variety of datasets, OOD detection models,
and OOD percentages Pgp, in our method for OOD detec-
tion models that do not use negative samples. Furthermore,
the experimental outcomes presented in Table 17 affirm that
our method consistently outperforms the IAD method across
all three backbone OOD detection models under different
test conditions in our method for OOD detection models that
use negative samples.
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For test cases varying ID and OOD datasets, we also
evaluated our proposed method on MNIST, EMNIST, and
FMNIST, for OOD detection models that do not use negative
samples (Table 18) and use negative samples (Table 19).
Our approach consistently demonstrates better performance
compared with the IAD method across different backbone
OOD detection models, which is similar to the observation
on harder test cases with CIFAR-10 and CIFAR-100 datasets
as in Table 2.

In addition, we also evaluate our proposed framework on
the original OOD detection task (P, = 0%) without data
contamination in Tables 20 and 21. It could be observed that
our proposed method maintains a very similar performance
of OOD detection on the original OOD detection task for
both the OOD detection models that do and do not use nega-
tive samples in almost all test cases. Also, the performance
stability is consistently better than the IAD approach in all
test cases.

Besides, we also compared our proposed method with a
popular method in the domain of “deep learning with noisy
labels”: Co-teaching [10]. The comparison results between
our proposed method and Co-teaching are shown in Tables
22 and 23. It could be observed that our proposed method
is able to consistently surpass the Co-teaching method in all
test cases, for both OOD detection methods that do and do
not use negative samples. Also, our method only requires
half of the runtime memory compared with Co-teaching, as
it needs two networks operating in parallel.

E.2: Performance of backbones OOD detection models
on clean ID datasets

Conventional OOD detection on clean ID datasets could be
regarded as a special and simplified variant of OOD detection
on contaminated datasets, where the OOD percentage Pj5qp,
of the training set is 0%. In order to provide a better view
and comparison with the performance of OOD detection
on contaminated datasets, we also present the conventional
OOD detection performance of all backbone OOD detection
models on uncontaminated (clean) ID datasets, shown in
Table 24.

E.3: Impact of OOD percentage Fjqp

To rigorously evaluate the influence of the OOD percentage
P5op on the efficacy of our method, we executed a sequence
of empirical analyses wherein P35, was systematically
varied from 1% to 10%. These analyses were performed
using the most effective backbone OOD detection models
identified within the frameworks of our method for OOD
detection models that do and do not use negative samples.
The experimental results are shown in Table 25.

The performance comparison results reveal that our
method consistently outperforms the IAD method across



Table 16. Performance comparison of our method and IAD on test cases for OOD detection models that do not use negative samples with
different P5op. The numbers reported are AUROC scores. “Backbone” indicates the backbone OOD detection models. Numbers in bold
indicate the best performance in each test case.

. Methods
ID Dataset OOD dataset P5op Backbone
Backbone only Backbone + IAD [18] Backbone + Ours

DB 78.1 85.6 91.4
LReg 80.2 88.3 93.5
1% LRat 76.5 84.2 90.1
WAIC 74.7 82.6 87.2
G-ODIN 81.4 89 93.1
MNIST EMNIST DB 75.7 82.9 88.6
LReg 78.5 86.1 90.4
2% LRat 74.6 82.4 88.6
WAIC 73.2 80.9 85.6
G-ODIN 81.4 89 93.1
DB 58.6 60.1 62.2
LReg 63.4 65.2 68.5
1% LRat 58.0 59 60.9
WAIC 56.9 57.7 59.1
G-ODIN 59.1 62.5 65.7
CIFAR-10 Celeb-A DB 56.7 584 60.6
LReg 62.2 64 66.9
2% LRat 55.9 57.8 59.5
WAIC 55.2 56.5 58.2
G-ODIN 57.2 60.8 64.3

Table 17. AUROC performance comparison of our method and IAD on test cases for OOD detection models that use negative samples with
different P5op. The numbers reported are AUROC scores. “Backbone” indicates the backbone OOD detection models. Numbers in bold
indicate the best performance in each test case.

Method
ID dataset OOD dataset P5op Backbone cthods
Backbone only Backbone + IAD [18] Backbone + Ours
CSI 82.6 89.3 94.7
1% CnC 83.4 89.9 95.2
MNIST EMNIST VOS 84.8 90.4 96.0
CSI 81.2 87.8 924
2% CnC 82.0 87.6 93.8
VOS 82.3 88.6 93.7
CSI 58.6 61.6 64.3
1% CnC 59.4 62.0 64.2
CIFAR-10 Celeb A VOS 59.8 61.8 63.1
CSI 57.1 60.2 62.6
2% CnC 56.8 60.5 62.3
VOS 56.5 59.9 62.1
different P55, based on our methods for OOD detection bone OOD detection models. This substantial enhancement
models that use negative samples or not with different back- attests to the robustness of our proposed framework.
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Table 18. AUROC performance comparison of our method and IAD on test cases for OOD detection models that do not use negative samples
with different ID and OOD datasets. The numbers reported are AUROC scores. “Backbone” indicates the backbone OOD detection models.

Numbers in bold indicate the best performance in each test case.

» Methods
ID Dataset OOD dataset 5 Backb
ase atase oop ackbone Backbone only Backbone + IAD [18] Backbone + Ours
DB 78.1 85.6 91.4
LReg 80.2 88.3 93.5
EMNIST LRat 76.5 84.2 90.1
WAIC 74.7 82.6 87.2
1% G-ODIN 81.4 89 93.1
0
MNIST DB 80.7 89.1 95.4
LReg 81.3 89.5 95.8
FMNIST LRat 80.6 88.9 95.4
WAIC 81.1 89.0 94.9
G-ODIN 80.2 88.6 95.1

Table 19. AUROC performance comparison of our method and IAD on test cases for OOD detection models that use negative samples with
different ID and OOD datasets. The numbers reported are AUROC scores. “Backbone” indicates the backbone OOD detection models.

Numbers in bold indicate the best performance in each test case.

Methods
ID Dataset OOD dataset P5op Backbone
Backbone only Backbone + IAD [18] Backbone + Ours

CSI 82.6 89.3 94.7

EMNIST CnC 83.4 89.9 95.2

VOS 84.8 90.4 96.0

MNIST 1% CSI 80.2 90.4 97.6
FMNIST CnC 81.1 87.9 98.4

VOS 81.6 93.0 99.5

E.4: Results on performance stability and termination
criterion

The stability of performance represents a critical metric in
which our methodology demonstrates superiority over the
IAD approach. Within the IAD framework, the authors
proffer a termination criterion predicated on a rank-based
algorithm utilizing a matrix of OOD scores for all samples of
the dataset, as discussed in the main text. While the authors
of IAD assert that this criterion enhances the efficacy of the
raw [AD method, we contend that the complexity of this
criterion is unnecessary. Contrarily, our method adopts a
more streamlined termination criterion based on the sequen-
tial increments of the OOD percentage estimation, Pét())D,
during training. This criterion emerges naturally from the
underlying principle that the stability of the backbone OOD
detection model is intrinsically linked to the stabilized pre-
diction of P5qp.

To substantiate the enhanced stability of our proposed
methodology and its associated termination criterion, we
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provided the results for this study in Table 26. We present
the data in terms of the mean AUROC scores, accompanied
by the Standard Error of the Mean (SEM) for each case.

Our empirical evidence reveals that our method consis-
tently attains superior performance, as evidenced by elevated
mean AUROC scores and diminished SEM values across var-
ious test scenarios, utilizing our method for OOD detection
models that do and do not use negative samples with differ-
ent backbone OOD detection models and Pj5,p. Notably,
the SEM values associated with our methodology closely
approximate those attributed to the raw backbone OOD de-
tection models when applied to the corresponding test cases,
in stark contrast to the IAD method. This congruence under-
scores the efficacy of our termination criterion and attests to
the reliability of a design predicated upon the OOD percent-
age estimation.



Table 20. AUROC score of our method and IAD for OOD detection models that do not use negative samples with different ID and OOD
datasets on the original OOD detection task (P5op = 0%). Backbone OOD detection model names with square (CJ) symbols represent the
ones that do not utilize negative samples. Numbers in bold indicate the best performance in each test case.

Methods
ID Dataset OOD dataset Backbone
Backbone only Backbone + IAD [18] Backbone + Ours
. DB” 58.1 579 58.1
Tiny-ImageNet G-ODIN” 62.0 61.5 62.0
Mini-ImageNet G-ODIN" 61.4 60.7 61.3
. . DB” 61.0 61.0 61.0
iNaturalist G-ODIN" 65.3 65.0 65.3
ImageNet-1k DB" 552 534 55.2
Openlmage-O G-ODIN” 584 58.0 58.4

Table 21. AUROC score of our method and IAD for OOD detection models that use negative samples with different ID and OOD datasets on
the original OOD detection task (P5op = 0%). Backbone OOD detection model names with triangle (A) symbols represent the ones that
utilize negative samples. Numbers in bold indicate the best performance in each test case.

Methods
ID Dataset OOD dataset Backbone
Backbone only Backbone + IAD [18] Backbone + Ours
Tiny-ImageNet n 62.9 61.7 62.9
CIFAR-100  nfinitmageNet YOS 60.2 59.6 60.1
iNaturalist R 63.8 63.6 63.8
ImageNet-1k Openlmage-O VoS 56.0 55.1 56.0

E.5: Extended results on OOD percentage estimation
performance

For OOD percentage estimation results, we also evaluate
our proposed method on various other datasets. Comprehen-
sive OOD percentage estimation evaluation results for OOD
detection models that do and do not use negative samples
are shown in Tables 27 and 28, respectively. It could be ob-
served that our approach demonstrates a consistent, accurate
estimation of the real OOD percentage across different test
cases and backbone OOD detection models.

Evaluation of OOD percentage estimation performance
is also conducted on test cases incorporating diverse ID and
OOD datasets for both OOD detection models that use neg-
ative samples or not. Table 29 illustrates that our method
maintains its precision in estimating Pj5,p across an ar-
ray of test cases, unaffected by the specific ID and OOD
datasets combined. Analogously, Table 30 affirms the abil-
ity of our method to provide close estimations of Pqp
for OOD detection models that use negative samples. This
consistent accuracy in estimation underscores our method’s
robustness and its capacity to handle a variety of unknown
OOD datasets.
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E.6: Extended results on ablation study of transition 7(*)

Besides, we also show that this transition 7(9) is also crucial
for the OOD percentage estimation in the training procedure,
as shown in Table 31. It could be observed that 7(!) also
contributes to a better OOD percentage estimation on various
datasets, backbone OOD detection models, and P qp.-



Table 22. AUROC score of our method and Co-teaching for OOD detection models that do not use negative samples with different ID and
00D datasets with P5op = 1%). Backbone OOD detection model names with square (CJ) symbols represent the ones that do not utilize
negative samples. Numbers in bold indicate the best performance in each test case.

Methods
ID Dataset OOD dataset Backbone B
Backbone only  Backbone + Co-teaching [10] Backbone + Ours

) DB" 54.8 56.5 57.2
Tiny-ImageNet G-ODIN" 56.9 60.2 61.3
CIFAR-100 - DB’ 543 55.0 55.6
Mini-ImageNet G-ODIN" 533 58.2 60.4
. . DB"” 57.9 59.6 60.7
iNaturalist G-ODIN" 60.4 63.5 64.8
ImageNet-1k DB" 53.6 54.2 54.3
Openlmage-O G-ODIN" 54.5 56.2 57.7

Table 23. AUROC score of our method and Co-teaching for OOD detection models that use negative samples with different ID and OOD
datasets with P5op = 1%. Backbone OOD detection model names with triangle (A) symbols represent the ones that utilize negative
samples. Numbers in bold indicate the best performance in each test case.

Methods
ID Dataset OOD dataset Backbone -
Backbone only Backbone + Co-teaching [10] Backbone + Ours
Tiny-ImageNet R 57.2 60.9 62.1
CIFAR-100  nfiniImageNet YOS 57.6 59.1 59.6
iNaturalist N 61.0 62.5 63.2
ImageNet-1k Openlmage-O VoS 53.8 54.9 55.2

Table 24. AUROC performance of all backbone OOD detection models for conventional OOD detection on uncontaminated (clean) ID
datasets.

Backbone
ID Dataset OOD dataset
DB LReg LRat WAIC G-ODIN Energy ReAct CSI CnC VOS
EMNIST 100 100 100 96 100 100 100 100 99 100
MNIST FMNIST 100 100 100 100 100 100 100 100 100 100
Celeb_A 63 70 45 40 67 69 74 66 65 64
CIFAR-10 SVHN 57 85 13 55 61 65 70 58 58 59
GTSRB 6 60 49 26 65 7 79 70 66 68
Tiny-ImageNet 58 - - - 62 68 74 - - 63
CIFAR-100  npipi TmageNet 56 - - - 61 65 6 - - 60
iNaturalist 61 - - ] 65 69 72 - - 64
ImageNet-Ik 50 image-0 55 - - - 58 62 6 - - 56

23



Table 25. AUROC performance comparison of our method and IAD on test cases of OOD detection models that do and do not use negative
samples varying P5op. Numbers in bold indicate the best performance in each test case.

P Methods
ID Dataset OOD dataset A Backb
atase atase ©oD ackbone Backbone only Backbone + IAD [18] Backbone + Ours
DB 78.1 85.6 91.4
1% VOS 84.8 90.4 96.0
DB 75.7 82.9 88.6
2% VOS 82.3 88.6 93.7
MNIST EMNIST
DB 59.2 76.5 82.4
5% VOS 72.1 81.5 90.4
DB 52.1 65.9 69.8
10% VOS 60.5 71.8 79.9

Table 26. Performance comparison of our method and IAD on stability based on 10 repeated simulations. The numbers reported are mean
AUROC scores and Standard Error of the Mean (SEM) values.

Methods
ID Dataset OOD dataset P5op Backbone
Backbone only Backbone + IAD [18] Backbone + Ours
DB 78.1+0.13 85.64+0.55 91.440.21
MNIST ~ EMNIST VOS 84.8+0.11 90.4-+0.44 96.0-£0.26
1% DB 58.6-0.14 60.140.39 62.2-0.24
CIFAR-10  Celeb A VOS 59.840.13 61.840.46 63.140.20
DB 75.740.21 82.94+1.17 88.64+0.38
MNIST EMNIST VOS 82.3+0.24 88.640.89 93.740.30
2% DB 56.7+0.21 58.4-0.82 60.640.37
CIFAR-10  Celeb-A VOS 56.5+0.31 59.9+1.03 62.1+0.52

Table 27. Normalized OOD percentage estimation error € comparison for our method and IAD for OOD detection models that do and do not
use negative samples with MNIST as ID dataset and EMNIST as OOD dataset of different P5op. “Any” indicates any of the backbone
OOD detection models.

P*
Methods Backbone ©ob
0.010 0.020 0.050
Backbone + IAD [18] Any™ N/A (0.980) N/A (0.960) N/A (0.900)
DB” 0.001 0.003 0.013
LReg"” 0.001 0.002 0.006
Backbone + Ours LRat"” 0.002 0.002 0.009
WAIC” 0.001 0.002 0.012
G-ODIN” 0.001 0.003 0.014
csI* 0.002 0.003 0.010
Backbone + Ours CnC* 0.001 0.003 0.006
vOSs* 0.001 0.002 0.010
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Table 28. Normalized OOD percentage estimation error € comparison for our method and IAD for OOD detection models that do and do not
use negative samples with CIFAR-10 as ID dataset and Celeb_A as OOD dataset of different P5op. “Any” indicates any of the backbone
OOD detection models.

P*
Methods Backbone ©ob
0.010 0.020 0.050
Backbone + IAD [18] Any™ N/A (0.980) N/A (0.960) N/A (0.900)
DB"” 0.001 0.002 0.016
LReg" 0.000 0.001 0.000
Backbone + Ours LRat” 0.000 0.001 0.006
WAIC” 0.000 0.001 0.016
G-ODIN” 0.001 0.001 0.012
CcSI1* 0.001 0.002 0.014
Backbone + Ours CnC* 0.001 0.002 0.004
vOS* 0.000 0.002 0.012

Table 29. Normalized OOD percentage estimation error € comparison for our method and IAD for OOD detection models that do not use
negative samples with different datasets of P5op = 1%. “Any” indicates any of the backbone OOD detection models.

Backbone
ID Dataset OOD Dataset Method
LReg"” LRat” WAIC”
Any Any Backbone + IAD [18] N/A (0.980) N/A (0.980) N/A (0.980)
EMNIST 0.001 0.001 0.002
MNIST

FMNIST Backbore 4 Ours 0.001 0.001 0.001

Celeb_A 0.000 0.000 0.000
CIFAR-10 — qypN 0.001 0.000 0.001

Table 30. Normalized OOD percentage estimation error € comparison for our method and IAD for OOD detection models that use negative
samples with different datasets of Pop = 1%. “Any” indicates any of the backbone OOD detection models.

Backbone

ID Dataset OOD Dataset Method

csI1* CnC” vOSs*®
Any Any Backbone + IAD [18] N/A (0.980) N/A (0.980) N/A (0.980)
EMNIST 0.002 0.001 0.001
MNIST

FMNIST Backbone + Ours 0.002 0.001 0.000
Celeb_A 0.001 0.001 0.000
CIFAR-10 gyyN 0.001 0.002 0.001
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Table 31. Normalized OOD percentage estimation error € comparison for our method and IAD for OOD detection models that use negative
samples with different datasets of Pop = 1%. “Any” indicates any of the backbone OOD detection models.

Backbone
ID Dataset OOD Dataset Method
DB" VOSs*©
Any Any Backbone + IAD [18] N/A (0.980) N/A (0.980)
EMNIST 0.001 0.001
MNIST
FMNIST Backbone + Ours 0.000 0.000
Celeb_A 0.001 0.000
CIFAR-10 - gypN 0.000 0.001
EMNIST 0.003 0.003
MNIST
FMNIST Backbone + Ours (w/o transition 7)) 0.002 0.001
Celeb_A 0.002 0.005
CIFAR-10 sypN 0.002 0.004
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