Brain-Inspired Spiking Neural Networks for Energy-Efficient Object Detection

Supplementary Material

1. Interpretability Analysis of Gradient Van-
ishing/Explosion Problems

We theoretically analyzed the feasibility of implementing
deep training for MSD and explained why it demonstrates
exceptional performance. Based on Gradient Norm Equal-
ity (GNE) theory [1], MSD can effectively prevent gradient
vanishing and explosion.

1.1. Lemma 1

A neural network can be considered as consisting of mul-
tiple blocks, where the Jacobian matrix of the j-th block is
denoted as J;. If Vj; ¢(J;,J]) ~ 1 and (J;,J]) ~

the network achieves “Block Dynamical Isometry”, Wthh
could prevent gradient vanishing or explosion.

Wherein, J; denotes the Jacobian matrix of the block 7,
where 7 is the index of the corresponding block. ¢ rep-
resents (A?) — ©?(A). The GNE theory ensures that the
network’s gradients neither vanish to 0 nor explode to oo, as
each block maintains ¢(.Jj, J; T) ~ 1 ensures the avoidance
of anomalous situations. In most cases[2, 9], QS(JJ, JJT) ~1
is sufficient to prevent gradient vanishing or explosion[1].

Theorem 1. General Linear Transform f(z) is a trans-
formation whose Jacobian matrix is .J. It is referred to as a
General Linear Transformation if it satisfies the following
conditions:
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Based on random matrix theory and mean field theory[4],
the data flow propagated through the network can be re-
garded as a random variable. Wherein, x is treated as a ran-

dom variable, £ [ zl:lzl(‘g)} denotes the 2-th moment of input

element. This definition is useful for gradient analysis be-

cause, once the output of the EMS block is normalized by

the BN layer, the second moment [l!f: E;ZE)} is repre-

sented as as.

1.2. Lemma 2: Multiplication

As theorem 4.1 in [1], given J = H;:L Jj, where J; =
R™i*™Mi-1 ig a series of mdependent random matrices. If
(J= HJ L Ji)(J = HJ 1, J;)T is at least unitarily invari-
ant at the 1,; moment, then we could obtain:
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1.3. Lemma 3: Addition

As theorem 4.2 in [1], given J = H;:L Jj, where J; =
R™3*™i-1 ig a series of independent random matrices. If
at most one matrix in .J; is not a centered matrix, then we
have

O(J,JT) = qu Jj,J}) 3)

The principles of multiplication and addition provide a
method for analyzing both serial and parallel networks.

Discussion on General Linear Transformations. The
Jacobian matrix of pooling can be represented as a ma-
trix J, where each element [J];; € {0,1}. For elements
that are not selected, [J];x = 0, and for selected elements,
[J]ix = 1. Therefore, the pooling layer can be viewed
as a general linear transformation. Similarly, the UpSam-
pling layer in the MSDF is also a generalized linear trans-
formation. Concatenation is also a general linear transfor-
mation, as the function f(z) = [z, f(x)] can be expressed
as f(x) = [I J)x, where f is a general linear transfor-
mation. Batch normalization and convolution layers have
been discussed in [1], so we only need to assume that the
Leaky Integrate-and-Fire (LIF) layer satisfies a general lin-
ear transformation, which has been proven in [9]. Since
MSD consists of a series of SCNs and ONNBs, we can ana-
lyze these blocks individually and multiply their effects ac-
cordingly.

Proposition 1. For SCN and ONNB, the Jacobian matrix
of the block can be expressed as:

o(J5, 0] ) = 4)

042

Proposition 2. For MSD, ¢(J;, J]T ) & 1 can be satisfied

by control the 2-th moment of the input.

Insights into the Proposition. According to [I],
@©(JJT) ~ 1 represents the formal expression of GNE,
which ensures that gradients neither vanish nor explode.
However, avoiding the exponential growth or decay de-
scribed in [1] is sufficient to address gradient-related issues.

In our backbone network, the SCN is the only factor
causing exponential gradient growth, which is mitigated by
the interspersed ONNB. Even if the initialized batch nor-
malization does not strictly satisfy ¢(JJT) ~ 1, the gra-
dient of each block does not increase as the network deep-
ens. In summary, our ONNB enhance the network’s perfor-
mance structurally.
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Figure 1. Object detection results on the COCO 2017 dataset. The figure compares the detection performance of YOLOv10 and MSD in

the same scenario.

1.4. Gradient Norm Equality Proof

As the primary component of ONNB, spiking neuron (SN)
contains a residual path and a shortcut path, which Jacobian
matrices are denoted as J,..s and J,.. n denotes the number
of layers. As shown in Fig. 3, the General Linear Transform
of the two paths is expressed as:

alz,res = ¢(Jresa J;res)alz_la &)

O‘lésc = ¢(Jse, JL)aé_la (©)
wherein, « 1 is the 2t" moment of the input data from (I —
1) block. The output of the BN layer has a variance of 1
and a mean of 0, o™ = a%*® = 1. Therefore,
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According to the discussion about concatenation [1] in

supplementary, we derive

¢j ¢j
wherein, J; denotes Jacobian matrix of shortcut path with-
out maxpooling layer. H; denote the Jacobian matrix of the
SCN. C;_; and C} represent the input and output channels
of the concatenation operation. 6; = ¢; — ¢;—;. By adding
the maxpooling layer, shortcut path can be expressed as:
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moment al2_1 is strictly controlled by the

BN layers of former block and a"***°" is fixed. Proper
maxzpool
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initializing of BN layers, with a4” =
sures that ¢(Jsc, JJ.) = —= holds.
A

2
¢(JSN7J;—N) = ¢(JT887 J;res) + ¢(Jsc, J;rc) = F
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For SN, ¢(J,JT) = 1 could be satisfied by control the
2t" moment of the input.
Resblock have already been discussed in [1]. Using gen-
eral linear transform and addition principle, we derive
oy 'o(J, JT) =ah =ab T 4+ L. (12)
0/2*1 originates from the preceding layer and is fixed at 2.
Therefore, we obtain ¢(Jonns, Joyng) = 5. By using
multiplication principle, the whole blocks have the prop-
erty: . 3
¢(J, ") = —, (13)
2
where a is the 2! moment of BN output in encoding layer.
After initialized the BN in encoding layer, a3 s controlled to

2th



3and ¢(J, JT) ~ 1 holds. Therefore, for MSD, ¢(.J, JT) ~
1 holds, which achieves “Block Dynamical Isometry” and
prevents gradient vanishing or explosion.

2. Additional Experiments

We conducted additional experiments to compare the per-
formance of our proposed method with several state-of-the-
art ANN object detectors on MS COCO [3] benchmarks.

Table 1. Comparison of baseline object detectors on MS COCO

Method Params(M) Size mAP@0.5 @mAP@0.5:0.95
PVT[7] 329 640 59.2 36.7
DETR[10] 41.0 640 62.4 42.0
YOLOVS5-S 72 640 56.8 5374
YOLOV7-tiny[6] 6.2 640 56.7

PPYOLOE-S[8] 79 640 60.5 46.6
YOLOV10-s[5] 8.05 640 59.1 423

MSD 7.8 640 62.0 453

We compared MSD with the baselines of recent high-
performance object detectors. The results show that MSD
achieves performance comparable to ANNs while maintain-
ing significantly lower parameter counts and energy con-
sumption.

Additionnaly, We compared the detection performance
of MSD with YOLOvV10 in the same scenario. MSD suc-
cessfully detected targets that were missed by YOLOv10
and showed higher accuracy for the same targets, demon-
strating the effectiveness of the proposed method in han-
dling challenging scenarios.
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