
CLIP-driven Coarse-to-fine Semantic Guidance for Fine-grained Open-set
Semi-supervised Learning

Supplementary Material

In this supplementary material, we provide further de-
tails on our proposed method, including the architecture of
the adapter we used and the training algorithm. We also
present additional experimental comparisons and ablations.

1. Architecture of Adapter
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Figure 1. The architecture of adapter in the CFSG-CLIP.

Fig. 1 illustrates the architecture design of our adapter
module used in the proposed CFSG-CLIP approach. By
introducing two linear transformations and a non-linear ac-
tivation, we enhance the model’s representational capabili-
ties. Moreover, we use a skip connection to retain the gen-
eralization ability of CLIP and apply two linear layers to
better adapt to the requirements of the downstream task.

2. Optimization Procedure of CFSG-CLIP
In this section, we present the detailed optimization pro-
cedure for labeled and unlabeled samples shown in Algo-
rithm 1.

Steps 1 to 10 illustrate the training process of coarse-
guidance branch. Specifically, in step 1, we obtain the tex-
tual features of coarse prompts and fine prompts through
textual encoder. In step 2, the labeled and unlabeled sam-
ples with different augmentations are fed into visual en-
coder with adapter to obtain the global and local visual fea-
tures. Steps 3 to 7 are the computational process of the
semantic filtering module for labeled and unlabeled sam-
ples with different augmentations. From step 3 to step 5,
we calculate the similarity between patch-level visual fea-
tures and coarse prompts’ textual features to select the top-k
patch-level local features. Then, we calculate the similarity
weights between top-k patch-level features and global vi-
sual features in step 6. We employ the similarity weights
to weight and aggregate the selected patch-level features in
step 7. In step 8, we obtain the probability predictions of
global and local visual features. We calculate the loss of la-
beled and unlabeled samples with different augmentations
for coarse-guidance branch in step 10.

Table 1. Analysis of different finetuning strategies on the FGV-
CAircraft dataset. The results are reported based on a single run
with seed 1.

Prompt-only Adapters-only All

Parameters (M) 8.0 9.2 9.3
Training Time (h) 11.3 11.6 11.7

Table 2. Comparison of various backbones and pre-trained
weights on the FGVCAircraft dataset. The results are reported
based on a single run with seed 1.

Data ViT-B/32 ViT-B/16 ViT-L/14

Maple 38.69 53.09 63.59
Ours 41.21 61.07 66.95

Building upon the training of coarse-guidance branch,
we apply the visual-semantic injection strategy in step 11
to embed the category-related visual-semantic cues derived
from the coarse-guidance branch into the visual encoder of
fine-guidance branch, enabling the visual encoder to focus
on more fine-grained clues. We then repeat steps 3 to 9
to obtain the global and local probability predictions of the
fine-guidance branch, which are used to calculate the fine-
guidance branch loss.

Finally, we optimize the losses of the two branches sep-
arately during model training.

3. More Ablations
3.1. Different Fine-tuning Strategies

To assess the efficiency of our proposed fine-tuning strate-
gies in fine-grained OSSL task, we compare the number
of parameters and training time across various fine-tuning
strategies. We can see that the computational cost of using
prompt and adapter fine-tuning simultaneously is negligible
as shown in the Table 1.

3.2. Various Backbones

The various backbone experiments on the Aircraft dataset
with 5 labeled samples are shown in the Table 2. As the
model size increases, the performance of the model im-
proves significantly. Additionally, to investigate the effect
of patch size, we experiment with patch sizes of 32×32 and
16× 16 on the FGVCAircraft dataset. The size of 16× 16
captures finer details and boosts performance by 19.86%.



Algorithm 1 Optimization of CFSG-CLIP in labeled and unlabeled samples

Input: {(xl, yl)} and {(xu)}: Labeled and unlabeled samples. α(·) and β(·): Weak and strong augmentation. pcm and pfm:
Coarse prompts and fine prompts of the m-th class name. V and VD: Visual encoder and visual encoder embedded with
visual semantic cues. T : Textual encoder. Ac and Af : Adapter. λc and λf : Weights of losses. δ: Confidence threshold.

1: tmc = T (pmc ), tmf = T (pmf ) ▷ Obtain the textual features of coarse prompts and fine prompts.
2: {z̃lc, zlc1 , z

l
c2 , ..., z

l
cP } = Ac(V(α(xl))),

{z̃uw
c , zuw

c1 , zuw
c2 , ..., zuw

cP } = Ac(V(α(xuw))),
{z̃us

c , zus
c1 , z

us
c2 , ..., z

us
cP } = Ac(V(β(xus))) ▷ Obtain the global and local features of the labeled and unlabeled samples

for the coarse-guidance branch.
3: for e ∈ [l, uw, us] do
4: seci = sim(zeci , t

m
c ) ▷ Calculate the similarity between patch-level visual features and textual features.

5: K = {i ∈ P : rank(seci) ≤ k} ▷Select the top-k patch-level local features.

6: we
ci =

exp(sim(ze
ci
,z̃e

c))∑
exp(sim(ze

ci
,z̃e

c))
, i ∈ K ▷ Calculate the similarity weights between top-k local features and global features.

7: zec =
∑

i∈K we
ciz

e
ci ▷ Obtain the aggregated local features for coarse-guidance branch.

8: p̃ec =
exp(sim(z̃e

c ,t
m
c )/τ)∑

m′ exp(sim(z̃e
c ,t

m′
c )/τ)

, pec =
exp(sim(ze
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m
c )/τ)∑

m′ exp(sim(ze
c ,t
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c )/τ)

▷ Global and local predictions for coarse-guidance branch.
9: end for

10: Lc = H(yl, p̃lc) +H(yl, plc) + λc(1(maxm(p̃uw
c ) > δ)H(p̃uw

c , p̃us
c ) + 1(maxm(puw

c ) > δ)H(puw
c , pus

c )) ▷ Calculate
the coarse-guidance branch loss.

11: {z̃lf , zlf1 , z
l
f2
, ..., zlfP } = Af (VD(α(xl), proj(zlc))),

{z̃uw

f , zuw

f1
, zuw

f2
, ..., zuw

fP
} = Af (VD(α(xuw), proj(zuw

c ))),
{z̃us

f , zus

f1
, zus

f2
, ..., zus

fP
} = Af (VD(β(xus), proj(zus

c ))) ▷ Inject visual semantic cues and obtain the global and local
features of the labeled and unlabeled samples for the fine-guidance branch.

12: Repeat steps 3-9 ▷ Global and local predictions for fine-guidance branch.
13: Lf = H(yl, p̃lf ) +H(yl, plf ) + λf (1(maxm(p̃uw

f ) > δ)H(p̃uw

f , p̃us

f ) + 1(maxm(puw

f ) > δ)H(puw

f , pus

f )) ▷ Calculate
the fine-guidance branch loss.

Output: Lc and Lf to update the network parameters.

Table 3. Performance with only labeled data and a mix of labeled
and unlabeled data. The results are reported based on a single run
with seed 1.

Method Dogs Cars CUB Aircraft

Only labeled 80.24 80.40 80.88 49.31
Labeled + Unlabeled 85.38 84.90 90.28 61.07

3.3. Performance with Labeled Data

To investigate the effect of unlabeled data in fine-grained
OSSL task, we report the results using only labeled data
on the four datasets with 5 labeled samples shown in the
Table 3. The large performance gap shows that the model
can effectively utilize useful information in unlabeled data
to improve the generalization ability of the model through
semi-supervised learning.

3.4. Hyperparameter Analysis

To investigate the impact of different hyperparameters for
unlabeled data on model training, we conduct experiments
with different values. As shown in Table 4 the model
achieves the best performance when the weight is set to 1.

Table 4. Performance with different hyperparameters on the FGV-
CAircraft dataset. The results are reported based on a single run
with seed 1.

λc & λf 0.2 0.4 0.6 0.8 1.0

Acc 57.65 59.21 59.39 60.89 61.07

4. Additional Experiments

4.1. Comparison with Coarse OSSL Methods

As shown in Table 5, we evaluate the performance of Open-
Match [29], FixMatch [31] and IOMatch [22] on fine-
grained datasets respectively. Those methods are mainly
designed for coarse-grained OSSL task based on ResNet
training from scratch. Therefore, their performance is sig-
nificantly inferior to that of the CLIP-driven methods with
few labeled samples.

4.2. Open-set OOD Detection Performance

All OSSL methods are trained on the dataset where unla-
beled samples contain OOD samples. When testing, some
methods [11, 23, 37, 42] focus on the restricted environ-



Table 5. Classification accuracy (%) for coarse OSSL methods on four fine-grained benchmark datasets with varying labeled set sizes
under the fine-grained OSSL setting. The results are presented as the mean with standard deviation over three runs using different random
seeds.

Method Stanford Dogs Stanford Cars CUB-200-2011 FGVCAircraft

5 20 5 20 5 20 5 20

FixMatch [31] 6.49±0.12 17.53±0.81 7.49±0.19 63.80±0.61 34.20±0.80 68.90±0.22 9.70±0.20 53.27±2.12

OpenMatch [29] 9.20±1.77 21.41±0.36 10.72±0.65 57.82±8.47 33.50±3.65 66.20±0.92 12.46±1.21 52.13±4.35

IOMatch [22] 8.43±0.07 21.87±0.44 9.69±0.54 57.23±6.92 39.23±0.40 72.50±0.24 10.40±0.75 54.55±2.13

CLIP [28] 79.25±0.00 79.25±0.00 75.97±0.00 75.97±0.00 66.00±0.00 66.00±0.00 31.37±0.00 31.37±0.00

Ours 85.48±0.21 89.42±0.16 90.38±0.09 93.08±0.08 84.73±0.17 90.53±0.34 61.09±0.27 72.29±0.10

Table 6. AUROC (%) of OOD detection on the unlabeled training set for CLIP-based methods across four fine-grained benchmark datasets
with varying labeled set sizes under the fine-grained OSSL setting.

Method Stanford Dogs Stanford Cars CUB-200-2011 FGVCAircraft

5 20 5 20 5 20 5 20

CLIP [28] 69.48±0.00 69.60±0.00 63.67±0.00 63.78±0.00 65.40±0.00 65.44±0.00 47.44±0.00 47.38±0.00

CLIP-LORA [43] 68.12±1.42 70.56±0.14 63.71±0.49 64.58±1.11 63.67±1.04 64.97±0.72 49.23±0.33 50.37±0.80

CLIP-Adapter [7] 69.93±0.15 64.50±1.01 58.85±1.28 60.89±0.94 61.07±0.59 64.04±0.12 49.60±0.11 51.45±0.49

CoOp [47] 60.13±0.35 59.56±0.96 56.23±0.95 57.20±0.50 58.86±0.26 59.16±0.13 50.85±0.25 51.48±0.11

LoCoOp [25] 60.59±0.38 60.43±0.14 59.66±0.20 60.33±0.14 59.86±0.25 61.07±0.07 50.98±0.62 51.19±0.41

PLOT [3] 67.34±1.49 65.57±1.31 58.58±1.19 60.09±0.64 63.24±2.56 65.48±0.45 50.33±0.19 52.03±0.21

MaPLe [14] 67.70±2.06 64.47±2.22 56.28±0.71 56.16±1.11 61.66±2.62 64.94±0.79 50.85±0.71 52.33±1.09

Ours 68.68±0.55 69.63±0.84 63.68±0.52 65.68±1.00 63.86±0.40 68.58±0.61 50.60±0.18 54.85±0.14

Table 7. AUROC (%) of OOD detection on the open-set test set for CLIP-based methods across four fine-grained benchmark datasets with
varying labeled set sizes under the fine-grained OSSL setting.

Method Stanford Dogs Stanford Cars CUB-200-2011 FGVCAircraft

5 20 5 20 5 20 5 20

CLIP [28] 70.21±0.00 70.21±0.00 62.25±0.00 62.25±0.00 64.49±0.00 64.49±0.00 47.48±0.00 47.48±0.00

CLIP-LORA [43] 68.40±1.57 70.77±0.16 62.86±0.29 63.77±0.97 63.52±1.21 65.10±0.81 50.26±0.38 50.25±0.48

CLIP-Adapter [7] 70.04±0.08 64.01±0.75 58.99±0.99 60.68±1.10 62.15±0.66 65.70±0.09 49.08±0.24 52.27±2.21

CoOp [47] 60.14±0.16 59.32±0.89 56.37±0.69 57.27±0.24 59.10±0.10 59.46±0.18 50.28±0.14 50.52±0.20

LoCoOp [25] 60.61±0.29 60.56±0.10 59.17±0.16 59.85±0.24 59.96±0.05 61.22±0.19 50.60±0.59 50.74±0.37

PLOT [3] 67.46±2.05 65.38±1.16 58.45±0.59 59.12±0.34 63.78±2.45 67.16±0.53 50.51±0.27 51.86±0.24

MaPLe [14] 67.64±1.93 64.25±1.89 55.78±0.87 54.64±1.11 62.98±2.49 67.30±1.01 50.70±0.55 51.69±0.73

Ours 67.35±1.56 69.29±0.84 63.01±0.72 64.29±0.69 65.78±0.69 71.84±0.66 50.16±0.04 54.29±0.17

ments where test samples are guaranteed to only contain ID
classes, while some methods [22, 29] also consider the test
samples containing OOD samples. In the main paper, we
follow the former setting to mainly focus on the test sam-
ples containing only ID samples in fine-grained OSSL task.
In addition, we report the AUROC of OOD detection with
other methods on unlabeled training sets and open-set test
sets as shown in Table 6 and Table 7.

5. Details of Datasets
• CUB-200-2011 includes 11,788 bird images from 200

species, officially divided into 5,994 training images and
5,794 test images.

• Stanford Dogs consists of 20,580 images depicting 120
dog variants, with 12,000 images allocated for training
and 8,580 images designated for testing.



• Stanford Cars comprises 16,185 images of cars, divided
into 196 categories, with 8,144 images allocated for train-
ing and 8,041 images designated for testing.

• FGVCAircraft contains 10,000 images of aircraft across
100 categories, with 6,667 images used for training and
3,333 images for testing.

• Semi-Aves includes a subset of bird species from the Aves
kingdom of iNaturalist 2018 dataset. There are 200 ID
class and 800 OOD class categories. The training and val-
idation set comprises 5,959 labeled images, 26,640 and
122,208 ID class and OOD class unlabeled images, re-
spectively. And the test set has 8,000 test images.


