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6. Data Processing

Video Filtering. Some of the collected video candidates
may not meet the high-quality standards required for co-
speech gesture video generation. For instance, certain
videos may feature multiple individuals or exhibit signifi-
cant scene changes across frames. To handle this, we first
segment the videos into clips using SceneDetect2, ensuring
that videos with different scenes are separated. Next, we
filter out multi-person videos by employing TalkNet [34], a
speaker diarization model that detects and distinguishes dif-
ferent speakers in a video. By using TalkNet, we ensure that
the remaining videos contain only single-person scenes. Fi-
nally, we use MediaPipe [25] to detect human faces and dis-
card videos with low face detection confidence, which are
typically videos featuring side views of faces. Additionally,
we retain only video clips longer than 3 seconds, as shorter
clips are unlikely to contain meaningful gestures.
Data Annotation. After obtaining the video clips from
the previous stage, we annotate our data as follows. First,
we extract the audio from the videos using ffmpeg. Next,
SHOW [48] method is applied to reconstruct the holistic
whole-body mesh, i.e., the SMPL-X motion parameters (in-
cluding pose and expression). Since the videos are typically
rectangular, we need to crop them into square frames. The
key challenge during cropping is determining the optimal
cropping position. To address this, we render the mesh pa-
rameters into mesh frames. Then, we binarize these mesh
images to obtain segmentation masks. Using these masks,
we compute the largest bounding box of the person in the
video, crop the width based on this value, and pad the height
accordingly to achieve a square aspect ratio. By ensuring
that all frames in the same video use the same bounding
box, we maintain a consistent camera position, which is
crucial for our task, as modeling camera movement is chal-
lenging.

After processing the data, we obtain our final dataset and
split it into training and test sets. The detailed statistics are
provided in Table. 1.

7. Implementation Details

The training process is divided into two stages. In the first
stage, we train only the audio-to-motion branch using audio
and motion parameters. This stage runs for 3,000 epochs
with a learning rate of 1e-4. The first stage is trained on
8 RTX 8000 GPUs for 1 day with a batch size of 256. In
the second stage, we train the entire network for 200 epochs

2https://github.com/Breakthrough/PySceneDetect

with a learning rate of 1e-5. This stage is trained on 4 A100
GPUs for 4 days with a batch size of 1. The input image
resolution is 512x512. The classifier-free guidance (CFG)
scale is set to 3.5 for the video diffusion branch.

To improve the model’s learning by exposing it to more
frames, we replace the 2D-VAE in I2VGen-XL [50] with
3D CV-VAE [51]. In this setup, the frame sequence length
F is set to 80 for the audio-to-motion branch. For the video
diffusion branch, the input is processed as 64 frames (f ),
which are reduced to 16 latent frames after passing through
the 3D CV-VAE. In addition, the training videos have an
FPS of 30, allowing the video diffusion branch to process
approximately 2 seconds of video.

For experimental efficiency, we train a separate model
for each identity. However, our method fully supports
multi-identity training. The reference encoder controls
identity appearance, and a one-hot ID embedding can be
easily integrated to audio-to-motion branch.

Efficiency Comparison: we compare inference time
and memory here. For 1s video (30fps, 512×512) gener-
ation on an A100 GPU, S2G takes 4.6s and 3GB, MYA
takes 40s and 46GB, while ours takes 13.7s and 21GB.
Note that MYA and ours are tested with memory-efficient
attention disabled due to environmental issues. Compared
to diffusion-based MYA, ours is more efficient due to the
lightweight reference encoder and audio-to-motion branch.

8. Metric Implementation

To evaluate the generated videos, we first extract skeleton
keypoints using the DWPose framework [45], preserving 12
upper-body keypoints and 21 keypoints for each hand, total-
ing 54 keypoints. FGD and Diversity are computed using an
autoencoder trained on skeleton keypoints from our train-
ing dataset, as outlined in [29]. Details regarding autoen-
coder training and FGD computation are available in their
github repository3. For Diversity, we adopt the methodol-
ogy from [52], with implementation details found in their
github repository4.

Additionally, BAS is calculated directly following [20]5.
For FVD, we leverage the I3D classifier [39], which is pre-
trained on the Kinetics-400 dataset [18]. Further instruc-
tions for this metric are available in the associated github
repository6.

3https://github.com/ShenhanQian/SpeechDrivesTemplates
4https://github.com/Advocate99/DiffGesture/tree/main
5https://github.com/google-research/mint
6https://github.com/JunyaoHu/common metrics on video quality



9. More Comparisons with MYA
In the main text, we utilize DiffSHEG [6] to generate mo-
tion parameters, render them into pose images, and drive
MYA to produce videos. To eliminate the influence of
DiffSHEG, we directly use ground truth motion parame-
ters, render them into pose images, and drive MYA for
video generation. As shown in Table 4, the GT-driven MYA
unsurprisingly achieves the best performance on FGD and
BAS. However, our method outperforms it on Diversity and
FVD metrics, indicating that our approach generates more
diverse gestures than even the ground truth. Moreover, our
method produces videos with stable backgrounds and clear
hand and finger details, whereas MYA generates videos
with unstable backgrounds and distorted hands and fingers,
as illustrated in Fig. 7. Furthermore, MYA often memo-
rizes appearance features during training, leading to gener-
ated videos that replicate the memorized appearance rather
than relying on the reference image. This behavior results
in noticeable inconsistencies, further highlighting the limi-
tations of MYA in generating diverse and accurate outputs.

Additionally, to ensure that our performance is not solely
attributed to I2VGen-XL [50], we replace the image dif-
fusion model with I2VGen-XL and adjust the dimensions
accordingly for video input. As shown in Table 4, this mod-
ification yields slightly improved results compared to SD-
MYA, though it remains inferior to our approach. More-
over, video diffusion models primarily enhance temporal
smoothness rather than addressing hand artifacts, and the
pretrained model mainly serves as a better initialization
since we employ full-parameter fine-tuning.

10. User Study
To further evaluate the visual performance of our method,
we conduct a user study comparing the gesture videos gen-
erated by each method and each ablation study. We sample
30 generated videos from our test set for each method, and
20 participants are invited to rank the videos. Participants
are asked to evaluate the videos based on four criteria:

Identity Preservation: Evaluates how well the essential
characteristics and attributes of the human are maintained
across the video.

Visual Quality: Assesses the video’s clarity, with higher
rankings indicating fewer issues such as blur, noise, and vi-
sual degradation.

Temporal Consistency: Measures frame-wise coher-
ence, ensuring the logical progression of motion and visual
elements across consecutive frames.

Sound-Video Synchronization: Judges the alignment
between speech and gestures, assessing the accuracy of the
generated motions.

Participants rank the videos, with rank 1 being the best.
In comparison with previous works, the rankings are con-

verted into points: rank 1 is assigned 3 points, rank 3 is
given 1 point, and so on. For ablation studies, rank 1 is as-
signed 5 points, rank 5 is given 1 point, and so on. A higher
overall score indicates better performance.

The user study results are presented in Table 5 and Ta-
ble 6. As shown in Table 5, our method significantly outper-
forms others across all dimensions, demonstrating its ability
to generate gesture videos with superior motion quality and
overall visual fidelity. Although MYA achieves a slightly
better BAS, it does not affect human perception of syn-
chronization. Table 6 further highlights that our full model
achieves state-of-the-art results in all metrics. The model
without motion information performs the worst, which is
consistent with the objective results shown in Table 3. The
model without a reference encoder and the model without
first-stage training yield comparable results, indicating that
skipping the first-stage training shifts focus to the audio-to-
motion branch while reducing the emphasis on the video
diffusion branch, thereby degrading the visual quality. The
model without slow-fast training achieves the second-best
results but still falls short of our full model, demonstrating
the effectiveness of our slow-fast training strategy.

We also show the user study interface in Fig. 10.

10.1. Statistical Analysis
Given the limited number of participants, slight differences
in rankings may not reliably indicate a significant prefer-
ence for one method over another. To address this issue, we
apply three statistical tests to validate the effectiveness of
our user study.

Kruskal–Wallis Test. We use the Kruskal-Wallis test to
assess overall differences across multiple groups. This test
is particularly robust when dealing with ordinal data and
does not require a normal distribution, making it well-suited
for our dataset. Since our user study data is ordinal and
non-normally distributed, the Kruskal-Wallis test provides
a reliable way to evaluate statistical significance. For more
details on the calculation, readers can refer to the Wikipedia
page7. The test outputs a p-value, where a lower value indi-
cates a higher degree of confidence in the observed differ-
ences across groups, signifying a stronger statistical signif-
icance.

Dunn’s Test. Dunn’s Test [9] is a post-hoc test used
for pairwise comparisons between groups. If the Kruskal-
Wallis test indicates a statistically significant difference,
Dunn’s Test helps identify which specific groups differ from
each other.

As shown in Table 7 and Table 8, the p-values are very
low and approach zero, indicating substantial overall dif-
ferences across the groups. To further analyze these differ-
ences, we refer to Fig. 8 and Fig. 9 for the results of Dunn’s
Test. In Fig. 8, all three groups show significant differences,

7https://en.wikipedia.org/wiki/Kruskal–Wallis test
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Figure 7. Qualitative comparison with GT-driven MYA. The leftmost image is used as the reference image. Red circles highlight the
obvious flaws in MYA. As shown, it struggles with issues such as unstable background, blurry hands and distorted fingers.

Model FGD ↓ Div. ↑ BAS ↑ FVD ↓
S2G [12] 3.69 180.59 0.7280 816.03

MYA [17] + DiffSHEG [6] 24.24 224.14 0.7452 1823.97
I2VGen-XL [50]+MYA [17] + DiffSHEG [6] 22.68 233.72 0.7427 1664.70

MYA [17] + GT 0.18 180.92 0.7542 841.31
Ours 1.87 273.72 0.7445 681.33

Table 4. Quantitative comparison with previous works on four objective metrics. Bold text indicates the best performance.

validating the effectiveness of our user study. For instance,
our method outperforms S2G by 0.5-0.6 points across all
metrics (Table 5), and Dunn’s Test confirms that the differ-
ences between the two groups are statistically significant,
demonstrating that our method is superior and unaffected by
the limited sample size. An interesting observation can be
seen in Fig. 9, where the model without first-stage training
and the model without the reference encoder show no sig-
nificant difference, as indicated by a p-value of 1. This find-
ing is consistent with the results in Table 6, where columns
1 and 2 yield similar scores. This suggests that it is difficult
to determine which model performs better given the limited
number of participants. However, this does not undermine
the validity of the user study, as our full model demonstrates
a statistically significant difference compared to all other in-
complete models.

ABX Test. First, we present the statistical analysis com-
paring our method (Ours) with S2G and MYA, in Table 9.
The score summary for these videos is presented in Ta-
ble 10. Based on the statistical analysis:

1. Significant differences exist across all metrics (all p-
values <0.05).

2. Ours performs best: Highest mean scores (2.65-2.75),
superior across all metrics vs S2G and MYA, and most
consistent performance (lower standard deviation rela-
tive to mean).

3. MYA performs worst: Lowest scores (1.10-1.22), largest
negative difference vs reference, particularly poor in
Identity Preservation (1.10).

4. Metric-specific findings: Identity Preservation shows the
largest variance between methods, Sound-Video Sync
differences are significant but smaller, and Visual Qual-
ity and Temporal Consistency show moderate differ-
ences.

To summarize, the ABX test result shows significant dif-
ferences across all video quality metrics (p-values <0.05),
with ours demonstrating superior performance (mean scores
2.65-2.75) and significant improvements over alternatives
(t-statistics 15.87-60.97). MYA consistently underperforms
(mean scores 1.10-1.22), while S2G falls between these ex-



Model Preservation ↑ Quality ↑ Consistency ↑ Synchronization ↑
S2G 2.15 2.12 2.18 2.18
MYA 1.10 1.22 1.13 1.13
Ours 2.75 2.66 2.69 2.70

Table 5. Quantitative comparison with previous works on four subjective metrics. Bold text indicates the best performance.

Model Preservation ↑ Quality ↑ Consistency ↑ Synchronization ↑
w/o Ref 2.52 2.49 2.48 2.54

w/o Motion 1.86 1.83 1.89 1.84
w/o First Stage 2.42 2.52 2.49 2.52
w/o Slow-Fast 3.51 3.55 3.48 3.55

Ours 4.69 4.61 4.66 4.53

Table 6. Quantitative ablation study on four subjective metrics. Bold text indicates the best performance.

tremes but remains significantly below ours (mean differ-
ences 0.50-0.60). These results align with our previous
Kruskal-Wallis test, indicating statistically significant dif-
ferences across all videos and supporting ours as the opti-
mal approach.

Next, we present the ablation study comparing our full
method (Ours) with ablated versions: w/o Ref, w/o Motion,
w/o First Stage, and w/o Slow-Fast, in Table 11. The score
summary for these videos is shown in Table 12. Based on
the statistical analysis:

1. Significant differences exist across all metrics (all p-
values <0.05).

2. Ours performs best: Highest mean scores (4.54-4.69),
superior across all metrics vs w/o Ref, w/o Motion, w/o
First Stage, and w/o Slow-Fast, and most consistent per-
formance (lower standard deviation relative to mean).

3. w/o Motion performs worst: Lowest scores (1.83-1.89),
largest negative difference vs reference, particularly poor
in Identity Preservation (1.86).

4. Metric-specific findings: Identity Preservation shows the
largest variance between methods, Sound-Video Syn-
chronization differences are significant but smaller, and
Visual Quality and Temporal Consistency show moder-
ate differences.

To summarize, the ABX test result for the ablation study
shows significant differences across all video quality met-
rics (p-values <0.05), with ours demonstrating superior
performance (mean scores 4.54-4.69) and significant im-
provements over ablated versions (t-statistics 17.63-66.32).
w/o Motion consistently underperforms (mean scores 1.83-
1.89), while w/o Slow-Fast performs closest to ours but
remains significantly below (mean differences 0.99-1.19).
These results highlight the importance of each component
in our method, particularly motion modeling, and support
ours as the optimal configuration.

11. Discussion on Lip Synchronization

Our method demonstrates strong performance in mitigating
hand artifacts and aligning gestures with audio, yet it strug-
gles to achieve precise lip synchronization in co-speech
gesture video generation. Effective lip sync typically de-
mands either large-scale datasets—such as the 2.2K hours
used in VLOGGER [7]—or specialized designs, like the la-
tent facial expression space in EmoPortraits [8]. Other ap-
proaches also achieve lip synchronization either by training
on large-scale datasets using diffusion models [35, 42, 43]
or by incorporating specialized lip synchronization mod-
ules [28, 47]. However, our dataset is too limited in size
to support such training, and the lip region constitutes only
a small fraction of the RGB feature space. This makes it
difficult to attain accurate lip sync using diffusion learning
alone, as the subtle details required for lip movements are
not sufficiently captured.

Although our audio-to-motion branch incorporates ex-
pression parameters, these form just a minor component of
the overall motion parameters and are not specifically en-
gineered for lip synchronization in the RGB space. These
parameters are fed into the video diffusion branch via cross-
attention, but without dedicated modules or loss functions
targeting lip movements, control over lip sync remains im-
plicit and weak rather than explicit and robust. This lack of
tailored design exacerbates the challenge of achieving pre-
cise lip alignment.

11.1. Audio-to-Motion Generation Quality
To address potential concerns that the lip synchronization
issues arise from inadequate audio-to-motion parameters,
we train our model on the TalkShow dataset [48] for a fair
comparison with TalkShow method. Our method outper-
formed TalkShow method across both face and body met-
rics, as shown in Table 13.

These results indicate that our audio-to-motion parame-



Preservation Quality Consistency Synchronization

P-Value 9.37× 10−256 1.73× 10−193 1.43× 10−233 6.65× 10−235

Table 7. Kruskal-Wallis Test results on the user study of comparisons with previous works.

Preservation Quality Consistency Synchronization

P-Value 7.37× 10−310 2.33× 10−297 5.37× 10−296 1.12× 10−275

Table 8. Kruskal-Wallis Test results on the user study of ablation analysis.

ters are sufficiently accurate and not the root cause of the
lip synchronization shortcomings. In addition, unlike Talk-
Show, which renders mesh outputs, our model generates
RGB features, introducing additional complexity due to the
need to handle detailed textures and appearances. This dis-
tinction suggests that the lip synchronization challenge is
more closely tied to the limited dataset size and the absence
of specific lip synchronization mechanisms rather than de-
ficiencies in the audio-to-motion pipeline.

12. Future Work

Although our method demonstrates strong performance in
co-speech gesture video generation, there is significant po-
tential for further improvement. Below, we outline several
key areas for future exploration.

Larger Dataset. Although we introduce a new large-
scale dataset, it only includes four identities and 33 hours of
video. A more comprehensive benchmark is needed for this
task. A key question is determining the dataset size required
for each identity to accurately generate high-quality videos
that replicate individual gesture styles.

Advanced Attention Mechanism. Our current ap-
proach uses a basic cross-attention mechanism to connect
the audio-to-motion and video diffusion branches. Future
work could explore more advanced attention mechanisms
to better capture and represent expression and pose, thereby
enhancing the motion information for the video diffusion
process.

Imbalanced Identities. Despite containing only four
identities, our dataset suffers from an imbalance in data dis-
tribution across subjects. This issue requires deeper analysis
and effective solutions to ensure a balanced representation
of model training.

Diverse Video Generation. While our current method
is limited to single-person videos, fixed backgrounds, and
front-view perspectives, future work will focus on gener-
ating diverse videos that feature multi-person interactions,
dynamic viewpoint changes, and adaptable backgrounds.
This would enable the creation of more versatile and real-
istic scenarios, greatly enhancing the applicability and ro-

bustness of the approach.

13. Ethical Impacts
Co-speech gesture video generation, which synthesizes
human-like gestures aligned with speech, raises several eth-
ical concerns. One major risk is its potential misuse in
deepfake technology, which can spread misinformation and
deceive audiences. Additionally, replicating culturally spe-
cific gestures without proper context may lead to miscom-
munication or cultural insensitivity. Safeguarding individ-
ual privacy and ensuring informed consent is essential, es-
pecially when using real individuals’ data. Furthermore,
over-reliance on this technology in human-computer inter-
actions may diminish the richness of authentic non-verbal
communication. To mitigate these risks, ethical guidelines
and robust safeguards must be established to promote re-
sponsible development and use.



Figure 8. Heat map of pairwise comparisons using Dunn’s test for the user study comparing with previous works. Warmer colors (closer to
red) indicate greater statistical significance in the differences between models, while cooler colors (closer to blue) denote lower statistical
significance. This visualization facilitates the quick identification of the most and least distinct model pairs.

Metric Compared Video Mean Difference T-Statistic P-Value Significant
Identity Preserving S2G 0.603 20.35 1.14× 10−78 True

MYA 1.647 60.97 0.00 True
Visual Quality S2G 0.539 15.88 2.25× 10−51 True

MYA 1.434 41.10 2.79× 10−226 True
Temporal Consistency S2G 0.504 15.82 4.99× 10−51 True

MYA 1.560 52.00 1.35× 10−301 True
Sound-Video Synchronization S2G 0.518 16.11 1.01× 10−52 True

MYA 1.567 54.12 1.52× 10−315 True

Table 9. Statistical Analysis for Video Comparisons (Reference: Ours)



Figure 9. Heat map of pairwise comparisons using Dunn’s test for the user study in the ablation study. Warmer colors (closer to red) indicate
greater statistical significance in differences between models, while cooler colors (closer to blue) represent lower statistical significance.
This visualization allows for quick identification of the most and least distinct model pairs.

Video Identity Preserving Visual Quality Temporal Consistency Sound-Video Synchronization
S2G 2.147 ± 0.447 2.119 ± 0.514 2.184 ± 0.474 2.177 ± 0.502
MYA 1.103 ± 0.342 1.223 ± 0.549 1.128 ± 0.401 1.128 ± 0.379
Ours 2.750 ± 0.542 2.658 ± 0.620 2.688 ± 0.588 2.695 ± 0.574

Table 10. Score Summary for Videos (Comparison with S2G and MYA)



Metric Compared Video Mean Difference T-Statistic P-Value Significant
Identity Preserving w/o Slow-Fast 1.175 22.89 7.03× 10−96 True

w/o Ref 2.166 51.65 2.40× 10−302 True
w/o Motion 2.827 66.32 0.00 True

w/o First Stage 2.266 35.77 3.73× 10−189 True
Visual Quality w/o Slow-Fast 1.064 20.95 7.23× 10−83 True

w/o Ref 2.125 49.22 9.98× 10−286 True
w/o Motion 2.785 65.84 0.00 True

w/o First Stage 2.097 31.74 1.82× 10−159 True
Temporal Consistency w/o Slow-Fast 1.185 22.19 3.93× 10−91 True

w/o Ref 2.187 50.02 2.93× 10−291 True
w/o Motion 2.770 64.53 0.00 True

w/o First Stage 2.171 33.91 2.01× 10−175 True
Sound-Video Synchronization w/o Slow-Fast 0.985 17.63 8.07× 10−62 True

w/o Ref 1.990 41.01 1.62× 10−227 True
w/o Motion 2.691 59.07 0.00 True

w/o First Stage 2.014 29.79 4.05× 10−145 True

Table 11. Statistical Analysis for Video Comparisons (Reference: Ours)

Video Identity Preserving Visual Quality Temporal Consistency Sound-Video Synchronization
w/o Ref 2.521 ± 0.851 2.490 ± 0.883 2.476 ± 0.890 2.545 ± 0.941

w/o Motion 1.860 ± 0.870 1.829 ± 0.859 1.893 ± 0.868 1.844 ± 0.850
w/o First Stage 2.420 ± 1.423 2.517 ± 1.491 2.491 ± 1.434 2.521 ± 1.471
w/o Slow-Fast 3.512 ± 1.109 3.550 ± 1.092 3.478 ± 1.156 3.550 ± 1.152

Ours 4.687 ± 0.540 4.614 ± 0.544 4.663 ± 0.557 4.535 ± 0.688

Table 12. Score Summary for Videos (Ablation Study)

Method Face Metrics Body Metrics
JawL1 LandmarkL1 LVD LVD FGD

TalkShow 0.00158 0.1553 0.0278 0.0229 2.91
Ours 0.00142 0.1485 0.0233 0.0189 2.12

Table 13. Comparison of audio-to-motion metrics between TalkShow and our method on the TalkShow dataset. Note that the metrics differ
from those in TalkShow paper, please refer to their github repository (Issue 4) for details.



Figure 10. The interface allows users to drag the video ID to the corresponding rank ID, with the option to double-click to cancel the
selection. Final rankings are displayed in the result box after clicking ”Save Results.” We also design an interactive window where
incomplete tasks are highlighted in red, enabling users to identify and address any unranked videos easily.
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