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1. More Implementation Details

In this section, we describe a more detailed implementation,
including the data preparation and model training details.

1.1. Data Preparation

We present more implementation details of data preparation
for each component in our method. We obtained a collec-
tion of 190K objects refined from [1] for training. For each
mesh, we first normalize the object to fit within a unit cube
and then convert it into a water-tight mesh. To facilitate the
training of the shape auto-encoder, we uniformly sample
500k points on the surface as input for the shape encoder.
Furthermore, we sample 500k points in the volume and an-
other 500k points near the surface of each mesh and then
compute the occupancy value through SDF as the target for
the shape decoder. For the 3D latent set diffusion model,
we render 4-orthogonal views of each object as multi-view
guidance, with a random rotation of azimuth in the range
of [−45, 45] and elevation angles in the range of [−10, 30]
for 5 times, resulting in a total of 25 images for each ob-
ject. We also render 20 images for each object with random
camera poses to generate the normal map for finetuning the
2D normal diffusion model.

1.2. Model Training

Following the approach in [9], we use the following ar-
chitecture for the shape auto-encoder: the number of self-
attention layers Le and Ld are set to 8 and 16 respectively,
while the number of the latent sets D and feature dimen-
sion C are set to 256 and 768 respectively. It is trained on
the Adam optimizer with a learning rate of 5e-5 and a total
batch size of 1024 using 8x A100 GPUs for 3 days. For the
conditional Latent Set Diffusion Model (LSDM), we im-
plement ϵθ with an Unet-like transformer consisting of 13
self-attention blocks. Each block contains 12 heads with
64 dimensions. We train ϵθ on the Adma optimizer with a
learning rate of 5e-5 and a total batch size of 1024 using
32x A800 GPUs for around 7 days.

For inference, we use DDIM sampling scheduler with
50 steps, which generates a 3D mesh within 10 seconds.
For the normal-adapted diffusion model, which is derived
from SD1.5, we opt for convenience to fine-tune the model
introduced in [2]. This model was originally fine-tuned on
high-quality human normals and is further refined using our
rendered normal images, trained using 8 A100 GPUs for
one day.

2. More Results
In this section, we firstly present more results for a more in-
tuitive perception of the effectiveness of our method, then
delve into a more comprehensive discussion highlighting
the advantages of each part of our method. Then, we present
the outcomes from various configurations aimed at enhanc-
ing normal maps.

2.1. More Qualitative Results
We provide more qualitative results for both mesh generate
stage and mesh refinement stage in Fig. 1 and Fig. 2. Re-
fined meshes are rendered as normal maps to highlight the
enhanced local detail.

We incorporate images with varied styles, obtained from
the internet, in our evaluation to gauge the generaliza-
tion capacity of our model. We also gathered several text
prompts for the evaluation of the text-to-3D generation ca-
pability. Our 3D native diffusion model produces coarse
geometry with neat shape and regular topology. Our mesh
refinement stage further enhanced the generated mesh with
more intricate details, such as wood grain on the box, hu-
man hair and wrinkles, wrinkles on clothes.

We further provide comparison results with Clay [8].
Due to the unavailability of the original mesh displayed in
[8], we copyed the rendered images from their paper and
present our results alongside for visual comparison. As is
shown in 3, our method generate meshes align better with
input images. Considering Clay [8] trained their model
on 527K objects, we believe that our results have demon-
strated the strong generation capability of our model, which
is trained with barely 190K objects.

2.2. Ablation study
We provide qualitative ablation results in Fig. 4 to show the
importance of each component in our method.

Single Image vs. Multi-view Images Condition. Com-
pared to the single-image condition, the multi-view images
generated by the 2D diffusion model provide more informa-
tion regarding the object. The generated shapes are prone to
have anomalous deformation in the single-image condition,
whereas the multi-view condition generates a more compre-
hensive 3D mesh.

Camera Pose Injection. Incorporating camera poses in
the image feature extractor helps the model to distinguish
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Figure 1. Raw coarse meshes generated by our proposed method using a single image as a reference or a text prompt.
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Figure 2. Results of the Automatic Mesh Refinement. We visualize the normal images of the coarse mesh and the refined mesh. It can be
seen from the images that our proposed automatic normal refinement module significantly enhances the geometric details, such as the fur
of the dog and the details of the face.

embeddings from different views of the object, ultimately
leading to more precise 3D shape generation. Without cam-
era pose injection, the model tends to generate a 3D geom-
etry with an incorrect orientation.

Training-free Cross-view Attention. Cross-view atten-
tion enables the propagation of information across disparate
viewpoints, thereby enhancing the consistency of gener-
ated images. Although without fine-tuning on multi-view
datasets, this mechanism substantially bolsters the multi-
view consistency of images.

Regularizations During Mesh Optimization. Our pro-
posed relative Laplacian constraint the vertices towards the
proximity of the coarse mesh, avoiding the mesh collapse
introduced by the self-consistent local smoothness, thereby
enabling a robust optimization process.

2.3. Different Settings of Normal Enhancement
We demonstrate the flexibility of our framework through
experiments with different settings.

The Effective of Different CFG Scale We demonstrate
the results with different classifier-free guidance weights.
As this variable becomes larger, the refinement process
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Figure 3. Comparison of image to 3d generation between ours coarse output and Clay [8]

takes more prompt information as guidance, and produces
results that are more consistent with text descriptions. The
quality of the generated image will be reduced if this value
is too large, we balance between the effect and quality by
setting this value to 20 by default.

The Effective of Control Scale for Tile Model The con-
trol scale defines how much the refine process will refer to
the control image, which is the normal map renderer from
coarse mesh in our situation. A larger control scale results
in less structural diversity and the refined normal maps are
more likely to align with the 3D shape. We default set this
value as 0.8, for the purpose of enhancing details while pre-
serving the overall shape of the coarse mesh.

3. Application
3.1. Magic Normal Brush
Our refinement module is designed to be versatile and can
be applied to a variety of real-world modeling applications.

Similar to ZBrush [6] software, we incorporate a brush
tool enabling users to interactively refine the normal map
of the mesh with the generative capabilities of the normal
diffusion model. Our proposed Magic Normal Brush sup-
ports meshes produced by various approaches, including
manual crafting and other 3D generation methods [3–5].
Users are required to first select the regions to be updated
and then type text prompts to edit the selected areas. As il-
lustrated in Figure 7(a), this tool enables users to efficiently
add whiskers to a man’s face via simply drawing and typing

text.
To fully preserve the high-frequency detail obtained

through early refinement, we involve 3D mask into calcu-
lation in each mesh optimizing step. Specifically, given a
2D mask Idrawv specified by user under drawing view pv ,
we first adopt normal diffusion model into inpainting task to
achieve the local editing of the guiding normal map. Then
we adopt the mesh optimizer into a 3D mask version by op-
timizing a 3D mask defined on each vertex. This step is nec-
cessary even if the guiding normal map is totally unchanged
outside the 2D mask, for the remeshing step and regulariza-
tion term can do harm to the geometry details on any region
on the editable 3D surface. We obtain the 3D mask by opti-
mizing a single value b ∈ B for each vertex, rendering the
variables with differentiable renderer under mask drawing
views and minimizing the L1 loss between the rendererd
images and 2D masks. Thanks to our explicit mesh opti-
mizing option, this results in a complete preservation for all
the vertices and edges outside the 3D mask, while preserv-
ing the local continuity between the edited and preserved
meshes.

3.2. Image as Prompt for Mesh Refinement
As presented in Fig. 7(b), in addition to using text prompts
as conditional for normal refinement, our model is also ca-
pable of incorporating images as conditions, thanks to the
advancements in the 2D diffusion community. Specifically,
we leverage the IP-Adapter [7] face model to utilize an im-
age as prompt for normal refinement. Consequently, we are
able to refine the coarse meshing based on the input IP im-
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Figure 4. Ablation Study. (a) When only using a single image as a reference, the absence of information for the occluded parts can result
in erroneous interpretations, as exemplified by the four ears of the goblin. (b) Incorporating the camera pose significantly enhances the
diffusion model to comprehend spatial information. Without this, the model may inaccurately predict the geometry, potentially leading
to distorted geometry, such as the unnaturally twisted body. (c) Introducing Cross-view attention significantly increases the multi-view
consistency of normal prediction, especially for round objects. (d) Employing relative Laplacian constraints addresses the issue of thin
mesh diminishing due to the local smoothness criteria in the standard Laplacian regularization term.
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Figure 5. Normal refinement results with different CFG settings
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Figure 6. Normal refinement results with different control-scale settings

age, such as the facial features of an individual, to produce a
mesh that maintains the same identity-preserving attribute.

3.3. Texture Generation
Our refined meth contains more high frequency details, thus
is more suitable for geometry guided texture generation. We
trained a multi-view normal map based control-net to gen-
erate multi-view aligned texture map, and inject text and
image conditions by embedding them as clip features, as is
done in [8]. As is demonstrated in Fig. 9, refined meshes

offer more precise control in the texture generation pro-
cess, ensuring a high-quality and richly detailed texture. We
present more colored results in Fig. 10.

4. Failure Cases

When the input images are overly intricate or are captured
from extreme viewpoints, it may affect the results of the
MV Diffusion model, thereby impacting the final geometry
generation. We show the result in Figure 8 and will add
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Figure 7. (a) With the Magic Normal Brush, it’s convenient to edit a mesh via simple drawing and typing text. Whiskers are easily added
to the mesh. (b) Our mesh refinement module is capable of accepting an image as the prompt. By incorporating a facial image to guide the
normal mapping enhancement, we can refine the mesh according to the identity in the image.
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Figure 8. Failure cases due to the poor multi-view prediction and
intricate structure.
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Figure 9. Our mesh with texture. We implement texture generation
using similiar methods as [8].

analysis in the revision.

5. Societal Impact

The societal impact of 3D generation technology is over-
whelmingly positive in several fields, such as healthcare,
education, architecture and manufacturing. 3D generation
streamlines processes and promotes creativity, leading to
more efficient and innovative solutions without any notable
negative effects. The authors believe that this work has
small potential negative impacts.
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Figure 10. Our mesh with texture. We implement texture generation using similiar methods as [8].
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