DPC: Dual-Prompt Collaboration for Tuning Vision-Language Models

Supplementary Material

A. More Implementation Details

Herein, we provide additional detailed setup of DPC to en-
hance the reproducibility of our model.

A.1. Experimental Setup

Datasets. As described in the main text, for most datasets,
we restrict the size of mini-batch sampled by the Dynamic
Hard Negative Optimizer to L < 32 when executing DPC
fine-tuning. The seed of DPC is consistent with backbone.

However, it is important to note that for the DTD [2]
and OxfordPets [25] datasets, after the base and new split-
ting, there are only 24 and 19 sub-classes that involved in
the base tasks, respectively, which are fewer than 32. Since
the Dynamic Hard Negative Optimizer requires maintain-
ing the size of the mini-batch smaller than the quantity of
base classes (otherwise, the effectiveness of hard negative
selection would be compromised), we reduce the parame-
ters to b = 2 and K = 8 for these two datasets, ensuring
L < 16. Furthermore, since EuroSAT [9] possesses only 5
base classes, we set b = 2 and K = 2 during optimization
on this dataset.

Apart from these, the data sampling strategy for the in-

ference process and fine-tuning on the backbone remains
consistent with the baselines.
Hyperparemeters. Following the setup of the backbones,
we utilize the ViT-B/16-based CLIP as the foundation
model for prompt learners. For a fair comparison, all back-
bones and DPC are fine-tuned for epochs ep = 20 with
learning rate [ = 0.002 for base-to-new tasks to avoid gra-
dient explosion, and a 16-shot setting is applied to all mod-
els except PromptKD backbone. For cross-dataset tasks,
we follow the PromptSRC [15] settings, fine-tuning on all
categories of ImageNet with ep = 5 and a learning rate
Ir = 0.0035, while reducing the depth of visual and text
prompts to 3 (except for CoOp).

Detailed information of the text and visual prompt set-
tings is enumerated in Tab. 6. For the initialization pro-
cess, text prompt in CoOp is randomly initialized adhering
a zero-mean Gaussian distribution, while the other 3 back-
bones apply the encoded “A photo of a” tokens as the initial-
ization template. Additionally, PromptSRC and PromptKD
follow the Independent Vision-Language Prompt (IVLP)
[28] setting, where prompts related to the two modalities
are independently initialized. We use 1 Tesla A40 GPU to
perform 3 runs on each dataset.

Algorithm. In Fig. 8, we demonstrate the DPC procedure as
pseudo-code. For clarity, although the mini-batch sampled
by DPC through the Dynamic Hard Negative Optimizer has

# T: mini-batch of text annotations

# |: mini-batch of images

# W: collaboration weight (W_b = base class, W_n = new class)
# HNS: Hard Negative Sampler

# FF: Feature Filter

# CE: Cross Entropy loss

### Dual prompts initialization

tuned_prompt = backbone_prompt_learner(T, ) # frozen
parallel_prompt = nn.Parameter(tuned_prompt) # learnable
mixed_prompt = W_b * parallel_prompt + (1-W_b) * tuned_prompt

### STAGE 1: Training stage on base class

# obtain features of image and text

T_feat = text_encoder(parallel _prompt) # [n_cls, dim]
|_feat = image_encoder(l) # [batch, dim]

# apply negative sampler to get hard negative features
# size of T_feat and |_feat after sampling: both are [batch*TopK, dim]
for (text, image) in batch:
hn_t, hn_i = HNS ((text, image), tuned_prompt) # [TopK - 1]
text_feat = FF (text_feat, [text_id, hn_t_id]) # [TopK, dim]
img_feat = torch.cat([img_feat, image_encoder(hn_i)]) # [TopK, dim]

# Hard Negative Optimizer

logits_img = logit_scale * hn_|_feat @ filtered_T_feat.t()
logits_txt = logits_img.t() # [batch*TopK, TopK*batch]
ids = torch.arange(batch*TopK)

loss = (CE(logits_img, ids) + CE(logits_txt, ids))/ 2

#iH# STAGE 2: Inference on base & new class
# inference on base
logit = similarity_head(text_encoder(mixed_prompt), |_feat)

# inference on new
mixed_prompt =W_n * parallel_prompt + (1-W_n) * tuned_prompt
logit = similarity_head(text_encoder(mixed_prompt), I_feat)

Figure 8. Pseudo-code of DPC in PyTorch. The size of dynamic
hard negative mini-batch is considered as L = b - K for easier
understanding.

Params CoOp MaPLe ProSRC ProKD
Text prompt depth 1 9 9 9
Visual prompt depth - 9 9 9
Context length 4,00 24) (4.4) 4.4
Prompt layer 1 12 12 12
Optimizer SGD SGD SGD SGD

Table 6. Training settings of backbones for base-to-new tasks.

a variable size L, we annotate the tensor dimensions in the
comments with the assumption L = b - K, meaning that
all the hard negative objects sampled in this mini-batch are
non-repetitive. This hypothesis does not affect the actual
process of the model.



A.2. DPC Optimization for Backbones

As a robust plug-and-play module, the DPC Optimizer per-
forms targeted modifications to various backbones based
on separate forms of prompts and model architectures to
achieve complete model adaptation. In this section, we pro-
vide a brief introduction to the frameworks of the 4 selected
backbones and declare the specific strategies for introduc-
ing and fine-tuning the DPC module.

CoOp [49]. CoOp briefly introduces a randomly initial-
ized text prompt to replace the original fixed template “A
photo of a [CLASS]”. Obeying the introduction of the DPC
framework in the main text, we first fine-tune the original
CoOp backbone to obtain the tuned text prompt P. Sub-
sequently, for the DPC optimizer, we append the parallel
prompt P’ into the text modality for dual-prompt collabo-
ration, while replacing the cross-entropy loss of CoOp with
the contrastive learning loss in hard-negatives L¢r, of DPC
for subsequent incremental fine-tuning.

MaPLe [14]. MaPLe integrates visual and text prompts
by establishing a set of activated feature mapping layers,
which derive corresponding visual prompts from learnable
text prompts. Within the DPC framework, after fine-tuning
the original backbone, we obtain sets of visual and text
prompts (P,;, Py;) as initial values for the parallel prompts
(P.;', Py') and load the weight parameters of the feature
mapping layers to initialize the DPC optimizer. Since only
text prompts P;; are learnable in MaPLe, similar to CoOp,
we upgrade the cross-entropy loss of MaPLe to DPC con-
trastive learning loss L¢r. in subsequent stages, while con-
tinuously optimizing the text-based parallel prompts P;;’
while keeping the mapping layers for visual prompts acti-
vated within DPC. In the Weighting-Decoupling weight ac-
cumulation module during the inference process, we apply
the same base-class weights wy or new-class weights w,, for
prompts of both modalities.

PromptSRC [15]. PromptSRC employs independent vi-
sual and text prompts for fine-tuning, following the IVLP
setting. It introduces more robust loss functions as
constraints to mitigate the negative impact of the BNT
problem. Specifically, in addition to the cross-entropy
loss Lcg adopted by typical prompt learners, PromptSRC
also appends consistency constraints between the prompts
and their corresponding modality features, Lscp-image and
LscLext, as well as a further constraint between the logits
after modality interaction, Lscr.-iogits» t0 balance the base-
new performance.

Therefore, in the DPC framework, after obtaining the vi-
sual and text tuned prompts (P,;, Py;) optimized by the
backbone, we construct parallel prompts (P,;’, Py;") based
on both modalities, keeping them activated to sustain learn-
ability. During DPC optimization, we replace the original
Lcg with L that corresponding to DPC, while the other 3
loss functions are directly inherited by the DPC optimizer,
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Figure 9. Initialization of text & image prompts and optimizers in
PromptKD backbone and DPC.

Avg. accuracy
Base New H

CLIP[27]  69.34 7422 71.70
CoCoOp [48] 8047 71.69 75.83
KgCoOp [42]  80.73 73.60 77.00
TCP[43]  84.13 7536 79.51
DPC-SRC 8610 74.78 80.04

KDPL [23] 77.11 71.61 74.26
CoPrompt [30] 84.00 77.23 80.48
DPC-PK 87.55 80.55 8391

Model

Table 7. Comparison with additional prompt tuning baselines
fine-tuned based on internal constraints or external knowledge for
base-to-new tasks. DPC—SRC denotes a combination of DPC and
PromptSRC, while DPC~-PK is a binding of DPC and PromptKD.

collectively contributing to the continuous fine-tuning of the
parallel prompts. Similarly, during inference stage, the vi-
sual and text parallel prompts (P, Py;) are still weight-
accumulated with the corresponding tuned prompts in rel-
evant modalities of PromptSRC backbone to achieve intra-
modality dual-prompt collaboration.

PromptKD [20]. As a knowledge distillation-driven model,
PromptKD introduces PromptSRC fine-tuned on larger ViT-
L/14 as the teacher model. Unlike other backbones, Promp-
tKD processes unlabeled images from the entire dataset and
applies the teacher model to infer and optimize the student
model across all base and new classes during fine-tuning.
In this procedure, the text prompts Py; extracted from the
teacher model are frozen, while only the prompts in the vi-
sual branch P,,; and a projection layer h(-) for aligning the
student model with the teacher model are updated.

To integrate the DPC optimizer into PromptKD, we de-
vise a targeted framework, as shown in Fig. 9. Initially, we
fine-tune the original PromptKD backbone to obtain the vi-
sual prompts P,,; and the parameters of the projection layer.



Subsequently, we fully modify the Dataloader of Promp-
tKD, altering it from loading unlabeled images across all
categories to sampling few-shot image-text pairs from base
classes, aligning it with other prompt tuning backbones.

Corresponding to the data input modification, fine-tuning
strategy of PromptKD is also momentously updated to
accommodate our DPC optimizer. Specifically, we con-
struct parallel prompts (P,;’, P;;’) based on the frozen text
prompts from the teacher model P;; and the visual prompts
fine-tuned by PromptKD P,,;, then set both of them acti-
vated. During DPC fine-tuning, all original loss functions
of PromptKD are disabled, while only the DPC image-text
contrastive loss L is applied for further optimization. It
is worth noticing that to maintain the original generaliza-
tion performance of PromptKD, the contrastive loss is ap-
plied under the ViT-L/14 setting of teacher model, transmit-
ting the text parallel prompts Py;" and the visual parallel
prompts upscaled by the activated projection layer h(Pm»/)
as inputs to the feature encoders. The weight accumulation
procedure is consistent with DPC in PromptSRC.

In summary, being constructed as an independent task,
DPC is introduced into PromptKD based on few-shot
image-text data as a plug-and-play module. Aforemen-
tioned design successfully integrates DPC optimization
while preserving the original performance of PromptKD.

B. More Experimental Results

Herein, we supplement the main text with more elabo-
rated experiments. Performance comparisons with addi-
tional prompt tuning baselines (§B.1), the specific impact
of collaboration weights (wyp,w,) on each dataset (§B.2),
similarity measurements of samples from the Hard Nega-
tive Sampler (§B.3), the effects of the DPC optimizer on the
visual or text branches (§B.4), more ablation studies on DPC
components (§B.5), and assessments of computational cost
(§B.6) are contained in this section.

B.1. Compare with More Baselines

To further highlight the comprehensive performance advan-
tages of DPC, more baselines are brought in for compari-
son on base-to-new generalization tasks. As illustrated in
Tab. 7, we compare DPC based on PromptSRC (DPC-SRC)
with the initial CLIP and other models optimized by internal
constraints, containing CoCoOp [48], KgCoOp [42], and
TCP [43]. For knowledge distillation-based models, KDPL
[23] and CoPrompt [30] are utilized for contrasting with the
combination of DPC and PromptKD (DPC-PK). It is appar-
ent that models reinforced by DPC surpass the current base-
lines, achieving the latest State-Of-The-Art performance.

B.2. Detailed Ablation on Collaboration Weights

Impact of Different Values. In Tab. 8 and Tab. 10, we
comprehensively compare the performance of various col-

weight for base class (wp)
01 02 03 05 1

ImageNet  76.41 77.72 77.72 77.95 77.92 77.58
Caltech101  97.55 98.32 98.58 98.39 98.39 98.00
StanfordCars 75.69 81.21 81.13 81.33 81.41 81.36
SUN397  80.99 82.58 82.81 82.54 82.67 82.33
Food101 90.49 91.09 91.15 91.18 91.12 91.08
DTD 80.09 84.95 84.61 85.76 85.53 83.22
EuroSAT  87.60 93.32 93.40 93.79 92.29 91.50
Flowers102 96.96 98.10 98.86 98.96 98.77 98.67
OxfordPets 95.06 95.11 95.80 95.48 95.27 94.90
UCF101 83.66 86.76 87.02 85.52 85.83 86.19
FGVCAircraft 37.33 42.38 45.56 45.26 44.00 42.20

Avg. 81.98 84.69 85.15 85.11 84.84 84.28
A +0.00 +2.71 +3.17 +3.13 +2.86 +2.30

Dataset

Table 8. Ablation study on the impact of collaboration weight for
base (wp) of DPC. Benefiting from Weighting-Decoupling struc-
ture, weights for base or new can be different.

Method ~ weight | Base  New H | A
MaPLe 83.52 7331 78.08

+DPC 0.2 85.07 73.31 78.75 | +0.67
+DPC 1.0 8593 7331 79.12 | +1.04

Table 9. Impact of collaboration weight for base (ws) on DPC
based on MaPLe [14] backbone. Analysis of this phenomenon is
exhibited in Appendix B.2.

weight for new class (w,,)
0 001 002 005 01 02

ImageNet 68.85 68.75 68.77 68.62 68.26 67.53
Caltech101  94.65 94.98 95.09 94.98 94.87 94.76
StanfordCars 70.14 69.79 69.42 68.61 66.92 63.04
SUN397 74.10 74.05 74.03 73.74 73.17 71.40
Food101 91.47 91.47 91.54 91.53 91.57 91.49
DTD 49.88 50.00 50.00 49.76 47.95 45.77
EuroSAT  51.62 51.41 51.08 49.31 46.05 39.79
Flowers102 68.37 68.30 68.23 67.66 66.67 65.11
OxfordPets 97.60 97.54 97.54 97.60 97.43 97.43
UCF101 66.31 65.66 65.33 64.09 63.66 62.52
FGVCAircraft 24.24 23.94 24.06 24.12 24.25 25.85

Avg. 68.84 68.72 68.64 68.18 67.35 65.88
A +0.00

Dataset

Table 10. Ablation study on the impact of collaboration weight for
new (wn) of DPC. Benefiting from Weighting-Decoupling struc-
ture, weights for base or new can be different.



weight for target domain (w,,)
0 0.02 0.05 0.1 02 03

ImageNet-V2 64.58 64.53 64.52 64.57 64.53 64.52
ImageNet-S 48.89 48.83 48.83 48.77 48.72 48.61
ImageNet-A 51.13 51.11 51.03 50.97 50.71 50.49
ImageNet-R  76.64 76.56 76.47 76.36 76.25 76.29

Avg. 60.31 60.26 60.21 60.17 60.05 59.98
A +0.00

Dataset

Table 11. Ablation study on the impact of collaboration weight
for target domain (w,) of DPC. Benefiting from Weighting-
Decoupling structure, weights for source or target can be different.

laboration weights (wy, w,,) for base and new classes in DPC
across 11 base-to-new tasks. For the base-class weight wy,
we observe that: (i) Although the model achieves the best
overall performance at w, = 0.2, this weight value is not
necessarily representative of the peak performance for in-
dividual datasets. We attribute this to the diverse data dis-
tributions across different datasets. (ii) When w;, = 1, im-
plying that the entire parallel prompt P’ is loaded for base
class inference, the performance is still substantially better
than the baseline. This corroborates that the Dynamic Hard
Negative Optimizer in DPC effectually enhances the fitting
of learnable prompts to the base classes.

In contrast, by observing the trend of the weight for new
class w,,, we quantitatively verify the existence of the BNT
problem, i.e. the model achieves maximum performance
at w, = 0 (we add a le-6 term to avoid gradient prop-
agation errors), and as the collaboration weight increases,
gradually introducing the parallel prompt optimized on the
base classes to the mixed prompt P}, the performance of
the model declines. We also acquire similar results in the
ablation study of cross-domain transfer tasks in Tab. 11.
This confirms that the optimization directions for base and
new classes during fine-tuning are opposite, leading to in-
terference between them. Nevertheless, benefiting from the
Weighting-Decoupling architecture of DPC, the collabora-
tion weights are variable across different tasks. Therefore,
we directly set w,, = 1075 to retain generalization of back-
bones on new classes, successfully avoiding BNT problem.
Special Phenomenon on MaPLe. For CoOp, PromptSRC,
and PromptKD, we observe better performance at w;, = 0.2
and w,, = 10~%. However, for MaPLe, we discover that
DPC achieves the best results at w;, = 1, as exhibited in
Tab. 9. Upon analysis, we consider that it may be due to the
application of non-linear feature projection layer in MaPLe
for generating visual prompts. Disrupting the linear con-
sistency of latent feature channels between the visual and
text prompt vectors (§4.4 in main text), this process leads to
feature bias during the weighting of dual prompts.
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Figure 10. Cosine similarity between ground-truth and Top- K re-
sults in entire Caltech101 [6] dataset. We compare the similarity
between random sampler in backbones and Negative Sampler in
DPC. Higher score reveals stronger similarity.

branch
Method ‘ _— ‘ HM A
| Text Image | Acc.
PromptKD v 83.59
+DPC (w/oimg) | v 83.04

+DPC (w/img) | v v |8391 +0.32

Table 12. Effect of freezing visual or text branches of DPC on
base-to-new tasks, utilizing PromptKD [20] as backbone model.

B.3. Quantification of Negative Sampler

In the Dynamic Hard Negative Optimizer module of DPC,
the Negative Sampler is introduced for autonomously sam-
pling hard negative objects (§3.3 in main text). To validate
the effectiveness of this module, we quantify the discrep-
ancy between the mini-batches sampled by DPC and the
prompt tuning backbone using semantic similarity measure-
ment. As demonstrated in Fig. 10, we apply a pre-trained
bert-base-uncased [4] model to calculate the average co-
sine similarity between ground-truth objects and other sam-
ples in the mini-batch obtained using either the Negative
Sampler of DPC or the random sampling strategy of the
backbone. Observations indicate that the samples obtained
by DPC possess higher similarity, providing effective data-
level gains for the Dynamic Hard Negative Optimizer.

B.4. Effect of Visual or Text Branches on DPC

To examine the impact of the DPC optimizer on the prompts
in respective modality, we conduct ablation experiments on
the visual and text branches based on DPC—-PK. Specifically,
after obtaining the tuned visual prompts through the Promp-
tKD backbone, we attempt to freeze them and activate only
the text branch during DPC fine-tuning, then compare this
with the original DPC that activates both modality branches.

We notice in Tab. 12 that freezing the visual branch re-
sults in the performance of DPC being even weaker than



Negative Hard Negative | HM

Sampling Optimizing Acc. A
(a) Cross Entropy | 74.84
(b) v Cross Entropy | 75.06 +0.22
(©) v DPC Contrastive | 76.13 +1.29

Table 13. Additional ablation study on components in the Dy-
namic Hard Negative Optimizer. Experiments are conducted on
the base-to-new tasks.

Learnable Memory Cost (MB) [pference
Params 1y gNet Caltech Cars FPS
CoOp 8K 8126 1071 1813 767.7

+DePT (10+N/2) K 8128 1195 1906 773.2
+DPC 16K 8390 1321 2067 758.5

Method

Table 14. Computational cost comparison between CoOp back-
bone, DePT [45] and our DPC. N is the quantity of base classes.

the backbone. We believe this is caused by the image-text
contrastive loss of DPC, which enhances modality interac-
tion and affects the feature channels of both branches si-
multaneously. Therefore, the operation that freezing single
modality may lead to a deviation of text and image features.
This indicates that the DPC optimizer simultaneously tunes
both visual and text prompts, benefiting from the contrastive
learning loss introduced by the Dynamic Hard Negative Op-
timizer.

B.5. Ablation on Components in DHNO

To demonstrate the necessity of each sub-module in the Dy-
namic Hard Negative Optimizer (DHNO) proposed in §3.3
of the main text, we conduct more ablation studies on the
components of DHNO. The results are exhibited in Tab. 13.
Since the Negative Sampler and Feature Filtering module
are bound together in the process of reconstructing hard
negatives, the Negative Sampling section in the table rep-
resents the combination of the two.

Compared with (a) CoOp backbone model, although (b)
introducing only the Negative Sampler reveals a perfor-
mance improvement, the gain is not distinct. We attribute
this to the relatively weak effectiveness of the cross-entropy
loss in the prompt learner backbones. Although the Nega-
tive Sampler effectively constructs mini-batches containing
hard negatives, the standard cross-entropy loss, due to its
lack of cross-modal interaction ability, fails to achieve deep
alignment between visual and textual features. In contrast,
significant enhancement in HM performance is observed in
(c) introducing the symmetric image-text contrastive loss of
DPC. The above results indicate a strong dependency among
the Negative Sampler, Feature Filtering, and Hard Nega-

ProSRC +DePT TCP +DPC

Base| 83.45 84.08 84.13 86.10
New | 7478 75.03 75.36 74.78
H | 7887 79.29 79.51 80.04

Base| 77.28 7791 7727 78.48
ImageNet New | 70.72  70.77 69.87 70.72
H | 7385 74.17 73.38 74.40

Base| 97.93 98.37 98.23 98.90
Caltech101 New | 9421 94.14 94.67 94.21
H | 96.03 96.21 96.42 96.50

Base| 95.41 94.83 94.67 96.13
OxfordPets New | 9730 97.21 97.20 97.30
H | 9634 96.00 9592 96.71

Base| 76.34 78.26 80.80 82.28
StanfordCars New | 74.98 7473 74.13 74.98
H 75.65 7646 77.32 78.46

Base| 97.06 97.44 97.73 97.44
Flowers102 New | 73.19 74.89 75.57 73.19
H 83.45 84.69 85.23 83.59

Base| 90.83 90.61 90.57 91.40
Foodl101  New| 91.58 91.63 91.37 91.58
H | 91.20 91.12 90.97 91.49

Base| 39.20 41.18 41.97 46.74
Alircraft New | 35.33 35.63 34.43 35.33
H 37.16 3820 37.83 40.24

Base| 82.28 82.60 82.63 83.63
SUN397 New| 78.08 78.82 78.20 78.08
H 80.13  80.67 80.35 80.76

Base| 83.45 83.64 82.77 86.88
DTD New | 5431 59.18 58.07 54.31
H | 6580 69.32 68.25 66.84

Base| 92.84 9446 91.63 96.25
EuroSAT New | 74.73 71.01 74.73 74.73
H | 82.80 81.07 8232 84.13

Base| 85.28 85.54 87.13 88.99
UCF101  New| 78.13 7729 80.77 78.13
H 81.55 81.20 83.83 83.21

Datasets

Avg. over
11 datasets

Table 15. Detailed comparison between plug-and-play methods.

tive Optimizing components in DHNO. The combination of
these 3 sub-modules leads to a remarkable improvement in
base class performance.

B.6. Computational Cost

Tab. 14 summarizes the variations of learnable parameters,
GPU memory overhead and inference time efficiency (eval-



uated by Frames Per Second, FPS) for the CoOp backbone,
as well as two plug-and-play models, DePT and our DPC,
across 3 example datasets. Due to the dual-prompt frame-
work of DPC, the amount of learnable parameters in DPC
is doubled relative to the initial model. However, profiting
from the two-step fine-tuning strategy of DPC, the backbone
prompt and parallel prompt are activated in separate stages,
meaning that the computational overhead does not signifi-
cantly increase. Experiments indicate that the memory cost
of DPC slightly raises compared with the backbone (~ 0.25
GB), which we believe is mainly due to the increased com-
putation required for the contrastive learning loss. As a
PEFT method, the computational cost of introducing DPC
to enhance prompt learners is completely acceptable.

B.7. Detailed Comparison: Plug-and-Play

In Tab. 15, we provide a more detailed supplement to the
data presented in Fig. 5 of the main text. Applying Prompt-
SRC as the backbone model, we report the base-to-new per-
formance of DePT and our DPC across 11 datasets, and in-
troduce another plug-and-play model, TCP [43], for com-
parison. It is clear that DPC achieves superior base-class
performance on most datasets, leading to the highest HM
score among all baseline models.

C. Limitation and Future Work

Although our DPC effectively conquers the BNT problem
in prompt tuning through prompt-level decoupling, we be-
lieve that this framework still has the room for optimiza-
tion. Firstly, while we inherit the settings of the original
backbone to obtain the tuned prompt, these configurations
may not represent globally optimal points for generaliza-
tion. How to adaptively acquire the top new-class perfor-
mance through the backbone, thereby further leveraging
the decoupled structure of DPC, remains a research-worthy
question. Secondly, DPC demands learnable text prompts
and image features (as well as optional visual prompts) for
contrastive learning. For the research based on pure vi-
sual prompts (such as VPT [13]) or feature extraction layers
(such as CLIP-Adapter [7]), it is challenging for DPC to in-
tegrally adapt as a plug-and-play approach.

In future work, beyond the directions outlined in Sec. 5
of the main text, we will continue to explore strategies for
enhancing the performance of base and new tasks, and in-
vestigate the feasibility of matching other forms of back-
bone models.
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