
Appendix

A. Method and network architectures

A.1. Sequential edge-vertex representation

In this section, we elaborate on the details of our method for
serializing the edge-vertex adjacency relationships in the B-
rep dataset during the training phase. Following the nota-
tions introduced in the main paper, we present our approach
using the B-rep model Bi as an example. The B-rep model
Bi consists of N i

f faces, indexed as 0, 1, . . . , N i
f − 1. Each

face contains a set of edges, denoted as FEi, which is the
dual representation of the edge-face relationship EFi. To
ensure unambiguous edge-to-edge connectivity, we intro-
duce a unique indexing scheme for edge endpoints. Specifi-
cally, for the j-th edge eij , we assign IDs 2j and 2j+1 to its
two endpoints, referred to as even and odd endpoints respec-
tively. In the main paper, we refer to this process as edge
duplication, which we will leverage in Appendix A.3. Con-
sequently, the B-rep model Bi contains 2N i

e unique end-
point IDs.To handle the many-to-one correspondence be-
tween endpoints and vertices, we define a mapping vector
Ṽi of length 2N i

e, where Ṽi[j] stores the vertex ID in Vi

corresponding to the j-th endpoint. The mapping vector is
initialized with−1 values and updated progressively during
computation.

The serialization process starts by initializing an empty
sequence EVseq

i . For each face f ik beginning with f i0, we
first identify the edge with the minimum ID as our start-
ing point and add its even endpoint ID to EVseq

i . Fol-
lowing the loop structure, we iteratively process connected
edges by selecting the connecting edge with the smaller ID
at each step and adding its corresponding endpoint ID to
EVseq

i . When a loop is completed, we append a loop-end
flag eloop (numerically represented as -1). This process re-
peats for any remaining edges within the face, treating each
as a new starting point for subsequent loops. After process-
ing all edges in a face, we append a face-end flag eface
(numerically represented as -2) before moving to the next
face. Fig. 1 illustrates our approach with a simple example:
a loop composed of edges e2, e4, e7, and e5. The end-
point IDs are labeled adjacent to their corresponding ver-
tices (e.g., endpoint IDs 4 and 10 map to the same vertex).
Following our serialization procedure, this loop generates
the sequence (4, 8, 15, 11,−1). The complete algorithm is
formally presented in Algorithm 1.

A.2. Details of edge-face adjacency generation

Graph-sequence representation. Fig. 2 provides a sim-
ple example illustrating three topologically equivalent rep-
resentations of edge-face relationships in a B-rep: (1) the
edge-face graph, (2) the face-edge-face matrix, and (3) the
edge-face sequence. The example is based on a B-rep with

10

11

4 5
8

9
1514

Figure 1. Illustration of our sequential edge-vertex representation.
A simple loop consisting of four edges (e2, e4, e7, and e5) is
shown with their endpoint IDs labeled. The loop is serialized into
sequence (4, 8, 15, 11,−1).

0
0
01

3001
0011

30
00200
020

000

0011 300 02 0

Figure 2. An illustrative example of three topologically equiva-
lent representations of the edge-face relationships in a B-rep: (1)
an edge-face graph, where nodes represent faces and connections
represent shared edges; (2) a face-edge-face matrix, where entries
indicate the number of shared edges between two faces; and (3)
a serialized edge-face sequence, obtained by flattening the upper
triangular part of the matrix in row-major order.

five faces, where pairs of faces share zero, one, or multi-
ple edges. As described in the main paper, the face-edge-
face matrix encodes the number of shared edges between
any two faces in the model. A matrix entry of 0 indicates
no shared edges between the corresponding pair of faces.
Exploiting the symmetry of this matrix, we restrict our at-
tention to its upper triangular part (excluding the diagonal)
for further processing. The upper triangular elements are
then serialized into a sequence by flattening them in row-
major order, ensuring that the sequence retains the complete
topological adjacency information of the faces. Our Edge-
Face Adjacency generation model EEF

θ is designed to learn
the distribution of these sequences, effectively capturing the
underlying topological patterns present in the edge-face re-
lationships of B-rep models. This sequential representation
simplifies the learning task while retaining all necessary ad-
jacency information.

Embedding. To standardize the varying lengths of se-
quences {EFseq

i }
N
i=1, we pad each face-edge-face matrix

FeFi to a fixed size Mf ×Mf using zeros, where Mf is
the maximum number of faces across {Bi}Ni=1. The edge-
face sequence is then extracted from the upper triangular
part of the padded matrix in a row-major order. For sim-
plicity, we continue to denote the padded matrix and the
extracted sequence as FeFi and EFseq

i , respectively. Note
that the length of the serialized edge-face sequence EFseq

i is
Mf (Mf−1)

2 . We define the embedding function in the edge-

1

Algorithm 1 Sequential Edge-Vertex Representation

Require: Face-Edge adjacency matrix FEi, Edge-Vertex
adjacency matrix EVi

Ensure: Edge-Vertex sequence EVseq
i

1: function OPP VERT(v, e) ▷ Returns the vertex ID
opposite to v in edge e

2: end function
3: function OPP ENDPNT(ep) ▷ Returns the endpoint ID

opposite to ep
4: end function
5: Initialize number of faces N i

f and number of edges N i
e

6: Initialize EVseq
i ← ∅

7: Initialize eloop ← −1, eface ← −2
8: Initialize Ṽi ← {−1}2N

i
e ▷ Mapping vector

9: for face index j ← 0 to N i
f − 1 do

10: Erest ← FEi[j] ▷ Edges of the current face
11: while Erest ̸= ∅ do
12: ecur ← min(Erest) ▷ Starting edge
13: Remove ecur from Erest

14: ep← 2ecur ▷ Current endpoint
15: Append ep to EVseq

i

16: vcur ← corresponding vertex of ep
17: vopp ← opp vert(vcur, ecur)

18: Ṽi[ep]← vcur

19: Ṽi[opp endpnt(ep)]← vopp

20: vcur ← vopp

21: while True do ▷ Process current loop
22: Find enext ∈ Erest connected to vcur

23: if enext = estart then ▷ Loop closed
24: Append eloop to EVseq

i

25: break
26: else
27: ep← corresponding endpoint to vcur

28: Append ep to EVseq
i

29: vopp ← opp vert(vcur, enext)

30: Ṽi[ep]← vcur

31: Ṽi[opp endpnt(ep)]← vopp

32: Remove enext from Erest

33: ecur ← enext
34: vcur ← vopp

35: end if
36: end while
37: end while
38: Append eface to EVseq

i ▷ Mark end of the face
39: end for

return EVseq
i

face model as:

EMEF
θ : {0, 1, . . . ,Me}

Mf (Mf−1)

2 → R
Mf (Mf−1)

2 ×def ,
(1)

where this function maps each integer in EFseq
i to a def -

dimensional embedding, capturing various semantic and
structural properties. Let SEθ, POSθ, and FIDθ rep-
resent the shared-edges embedding, positional embedding,
and face ID embedding, respectively. The final embedding
is computed as:

EMEF
θ (EFseq

i) = SEθ(EFseq
i) + POSθ(EFseq

i)

+ FIDθ(EFseq
i),

(2)

where the shared-edges embedding is defined as:

SEθ(EFseq
i) = (Wθ · onehot(EFseq

i))T , (3)

Here, Wθ ∈ Rdef×(Me+1) is a learnable matrix and
onehot(EFseq

i) ∈ {0, 1}(Me+1)×
Mf (Mf−1)

2 represents the
one-hot encoding of EFseq

i . The positional embedding
POSθ indicates the position index of each token in the se-
quence, implemented using the sinusoidal positional encod-
ing scheme proposed in [7]. For the face ID embedding,
we assign each face a learnable def -dimensional embed-
ding vector. The embedding of an edge is computed as the
average of the embeddings of the two faces it connects. For-
mally, for the k-th element in the sequence EFseq

i , the cor-
responding face ID embedding FIDθ(EFseq

i)[k] is defined
as:

FIDθ(EFseq
i)[k] =

(Vθ · onehot(krow))T

2
+

(Vθ · onehot(kcol))T

2
,

(4)

where Vθ ∈ Rdef×Mf is a learnable matrix, and krow, kcol
represent the row and column indices of the k-th element in
FeFi’s upper triangular portion.

Training workflow. During training, the sequence
EFseq

i is fed into the Transformer encoder, which outputs
a contextual embedding with shape Mf (Mf−1)

2 × def . To
obtain the latent code, we compute the mean of the embed-
dings for all tokens in the encoder’s output. This aggre-
gation step ensures that the latent code encapsulates global
contextual information from the input sequence. In the de-
coding phase, a special token is prepended to the sequence
EFseq

i as a “begin” token, while the last token of the se-
quence is removed. The modified sequence is then passed
through the embedding layer, as discussed in the previous
paragraph, to obtain its embeddings. These embeddings
are combined with the latent code and fed into the masked
Transformer decoder, which outputs a probability distribu-
tion over all possible tokens for each position in the se-
quence. This architecture aligns with the framework of a
standard Variational Autoencoder (VAE) [4], where the en-
coder and decoder are jointly optimized. Tab. 1 summarizes
the output shapes of each module during the training phase.

2

Autoregressive generation. During inference, we sam-
ple a latent code from the learned latent space and initial-
ize the sequence with a “begin” token. The initialized se-
quence, combined with the latent code, is fed into the Trans-
former decoder to obtain the probability distribution of the
first token. We sample from this distribution to generate
the first token of the sequence. Subsequently, this sampled
token is appended to the current sequence, which is then
passed through the decoder to predict the distribution of the
next token. This process is repeated iteratively until the se-
quence reaches the predefined length (i.e., Mf (Mf−1)

2).

A.3. Details of edge-vertex adjacency generation
Face feature extraction. To integrate the information from
the edge-face adjacency (edge-face graph) generated in the
previous step, we employ a graph convolutional network
(GCN) [5]. Specifically, the feature of each face node is ini-
tialized based on the number of edges it contains, while the
weight of each edge between two connected face nodes is
determined by the number of edges they share (FeFi/Me).
These initial node features and edge weights are input into
a two-layer GCN, which aggregates and transforms infor-
mation from neighboring nodes. This process yields a final
embedding matrix with shape N i

f × dev , where dev is the
dimensionality of the aggregated features for each face. The
resulting face node embeddings are then combined with the
face ID embeddings to form the final aggregated face fea-
tures. It is worth noting that this face feature extraction step
is optional, as it may slightly increase training time while
offering marginal performance gains.

Endpoint embedding. To generate the endpoint em-
beddings, each edge in the Ei is duplicated, producing two
copies corresponding to its two endpoints, as illustrated in
Fig. 3. The resulting duplicated edges is denoted as

Ẽi =
{
ei,even0 , ei,odd0 , ei,even1 , · · · , ei,oddNi

e−1

}
, (5)

To encode the endpoint-specific information, we introduce
two learnable vectors, embeven ∈ Rdev and embodd ∈
Rdev , representing the embeddings for “even-indexed
edges” and “odd-indexed edges”, respectively. The final
endpoint embedding for the edge set Ẽi is constructed as
a sequence of these embeddings, defined as

EDP
(
Ẽi

)
= {embeven, embodd, · · · , embeven, embodd} ,

(6)
where

∣∣∣EDP
(
Ẽi

)∣∣∣ = 2N i
e. This structured embedding

provides a consistent and learnable representation for edge
endpoints, enabling efficient feature encoding for embed-
ding tasks.

Training workflow. During the training phase, the
edges Ei together with two special tokens eloop and eface
are embedded into 2N i

e + 2 vectors, each with dimension

Figure 3. Each edge in the Ei is duplicated to form Ẽi, with even-
and odd-indexed edges assigned to represent its two endpoints.

dev . These embeddings are processed by the Transformer
encoder to obtain contextual embeddings EEV

θ (Ei) ∈
R(2Ni

e+2)×dev . For the decoding process, each inte-
ger in the ground-truth edge-vertex sequence EVseq

i is
mapped to its corresponding contextual embedding, main-
taining the edge connectivity order. These aligned em-
beddings, combined with the positional embedding POSθ,
are then processed by a masked Transformer decoder fol-
lowed by a pointer network to produce decoder embeddings
DEV

θ (EEV
θ (Ei),EVseq

i) ∈ R|EVseq
i |×dev . The pointer at-

tention scores, computed as:

Pointer(Ei,EVseq
i) = DEV

θ (EEV
θ (Ei),EVseq

i)·EEV
θ (Ei)

T ,
(7)

represent the probability distribution over all possible edges
at each position after softmax normalization. Tab. 2 sum-
marizes the output dimensions of each module.

A.4. Details of geometry generation network
Topology-aware Geometric Generation. For the face
bounding box generation, we introduce a learnable matrix
in R(Me+1)×dgeom to encode shared-edge relationships be-
tween faces, where dgeom denotes the embedding dimen-
sion. The attention weights between faces are adjusted
by adding the corresponding edge embeddings based on
the number of shared edges. In vertex coordinate genera-
tion, we incorporate edge connectivity information through
two learnable embeddings that indicate whether vertices
are connected. These embeddings modulate the attention
weights in the Transformer. Additionally, we augment each
vertex’s input representation by incorporating the average
embedding of its adjacent faces’ bounding boxes. For edge
and face geometry generation, unlike the previous stages,
we maintain the original attention mechanism without ad-
ditional adjustment. Instead, we enhance the input token
embeddings with topological information. Specifically, for
edge geometry generation, we enrich the input token em-
beddings with: (1) Bounding box embeddings of faces con-
taining the edge. (2) Coordinate embeddings of the edge’s
two endpoint vertices. Similarly, for face geometry gen-
eration, the input token embeddings are enhanced with: (1)
The corresponding face’s bounding box embedding. (2) Co-
ordinate embeddings of the face’s vertices. (3) Geometric
embeddings of the face’s boundary edges. This hierarchical

3

Input Embedding (Masked) Transformer blocks Output layer

Encoder Mf (Mf−1)
2

Mf (Mf−1)
2 × def

Mf (Mf−1)
2 × def def

Decoder Mf (Mf−1)
2 , def

Mf (Mf−1)
2 × def , def

Mf (Mf−1)
2 × def

Mf (Mf−1)
2 × (Me + 1)

Table 1. Summary of output shapes for each module of our edge-face model during the training phase.

Input Embedding (Masked) Transformer blocks Output layer

Encoder N i
e (2N i

e + 2)× dev (2N i
e + 2)× dev -

Decoder (2N i
e + 2)× dev, |EVseq

i | |EVseq
i | × dev |EVseq

i | × dev |EVseq
i | × (2N i

e + 2)

Table 2. Summary of output shapes for each module of our edge-vertex model during the training phase.

Figure 4. Visualization of B-spline representations in our frame-
work. Each edge is represented by a cubic B-spline with 4 control
points, while each face is parameterized by a bi-cubic B-spline
surface with a 4× 4 control point grid.

approach ensures that each generation stage benefits from
both the topological structure and previously generated geo-
metric information, leading to more coherent and physically
valid results.

Learning of B-spline Representation. We adopt B-
spline representations for both edge and face geometries.
For edges, we employ cubic B-splines with knot vector
{0, 0, 0, 0, 1, 1, 1, 1}, while faces are represented using bi-
cubic B-splines with knot vectors {0, 0, 0, 0, 1, 1, 1, 1} in
both u and v directions. This B-spline representation ex-
hibits inherent symmetry, meaning different orderings of
the same control points can produce identical geometric
forms. To ensure consistency in our training data, we uti-
lize OpenCascade’s curve and surface conversion functions
[6] to standardize the B-spline representations. Specifically,
all edges and faces in the dataset are converted to B-spline
form, establishing a consistent ordering of control points
that is maintained throughout the training process. Dur-
ing inference, we generate the control points sequentially
using our trained model and construct the B-spline geome-
tries through OpenCascade’s built-in functions, following
the same control point ordering convention established dur-
ing training. Fig. 4 illustrates examples of edge and face
geometries in B-spline representation along with their cor-
responding control points.

B. Experiments
B.1. Implementation Details
We implement our framework in PyTorch and conduct all
experiments on 4 NVIDIA A800 GPUs. The B-rep dataset
is randomly split into training (90%), validation (5%), and
test (5%) sets. The transformer embedding dimensions are
set to def = 128 for the edge-face model, dev = 256
for the edge-vertex model, and dgeom = 512 for the ge-
ometry generation models. To accommodate the topology
structure, we set the maximum number of shared edges be-
tween faces to Me = 5 and the maximum number of faces
to Mf = 30. For topology learning, we train the edge-
face model for 2, 000 epochs and the edge-vertex model for
1, 000 epochs. The four geometry generation models are
each trained for 3, 000 epochs. All models are optimized us-
ing Adam with an initial learning rate of 5×10−4 (1×10−4

for the ABC dataset) and weight decay of 1× 10−6, with a
batch size of 512. For the geometry generation models, we
employ a linear-schedule DDPM [2] with 1, 000 diffusion
steps during training. The noise schedule follows a linear
beta schedule from 1× 10−4 to 2× 10−2.

B.2. Shape Retrieval
To further evaluate DTGBrepGen’s capability in generating
novel shapes rather than merely memorizing training sam-
ples, we conduct a shape retrieval experiment [3] between
the generated samples and the training dataset.. Follow-
ing established protocols, we compute both Chamfer Dis-
tance (CD) and Light Field Distance (LFD) [1] between
500 randomly generated shapes and the entire training set.
As shown in Fig. 5, we visualize representative examples
of our generated shapes alongside their two most simi-
lar counterparts from the training set retrieved using both
metrics. The distinct geometric variations between gener-
ated samples and their nearest neighbors in the training set
demonstrate that DTGBrepGen is not simply reproducing
training examples. These results collectively validate that
our topology-geometry decoupled approach enables the cre-

4

Generated Shape Generated ShapeLFD Query CD Query LFD Query CD Query

Figure 5. Representative examples of generated shapes alongside their two nearest neighbors from the training set, retrieved using Chamfer
Distance and Light Field Distance metrics. The distinct geometric differences highlight the novel nature of the generated shapes.

ation of novel, yet realistic B-rep models that extend beyond
the training distribution while maintaining high geometric
quality.

B.3. Qualitative Results of the Ablation Study
To demonstrate the advantages of B-spline representation
over discrete point-based approaches, we conduct extensive
qualitative comparisons on the ABC dataset, as illustrated in
Fig. 6. Our B-spline-based method exhibits consistently su-
perior performance, producing smoother and more geomet-
rically accurate details compared to the point-based vari-
ant. These qualitative results, aligned with our quantitative
findings in the main paper, further validate the effective-
ness of directly learning B-spline control point distributions
over discrete point-based representations. The superior per-
formance can be attributed to the B-spline representation’s
inherent ability to capture continuous geometric features
with fewer parameters, leading to more robust and accurate
shape generation.

B.4. More Examples Generated by DTGBrepGen
We present additional generation results to demonstrate
DTGBrepGen’s versatility. Fig. 7 shows diverse uncondi-
tional generation examples on the DeepCAD dataset. Fig. 8
presents class-conditioned generation results across differ-
ent furniture categories. Fig. 9 illustrates our model’s capa-
bility in translating point clouds to B-rep models.

5

(a) Point-based approach (b) B-spline-based approach (ours)

Figure 6. Qualitative comparison between B-spline-based and point-based geometric representations on the ABC dataset.

6

Figure 7. Examples of B-rep models generated by DTGBrepGen on the DeepCAD dataset.
7

Figure 8. Examples of class-conditioned generation on the Furniture dataset, with distinct colors representing different categories.

8

Figure 9. Examples of point cloud-conditioned B-rep generation on the DeepCAD dataset.

9

References
[1] Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming Ouhy-

oung. On visual similarity based 3d model retrieval. In Com-
puter Graphics Forum, pages 223–232. Wiley Online Library,
2003. 4

[2] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. Advances in Neural Information
Processing Systems, 33:6840–6851, 2020. 4

[3] Ka-Hei Hui, Ruihui Li, Jingyu Hu, and Chi-Wing Fu. Neural
wavelet-domain diffusion for 3d shape generation. 2022. 4

[4] Diederik P. Kingma and Max Welling. Auto-encoding vari-
ational bayes. In 2nd International Conference on Learning
Representations, ICLR 2014, Banff, AB, Canada, April 14-16,
2014, Conference Track Proceedings, 2014. 2

[5] Thomas N. Kipf and Max Welling. Semi-supervised classi-
fication with graph convolutional networks. In 5th Interna-
tional Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Pro-
ceedings, 2017. 3

[6] Trevor Laughlin. pyocct – python bindings for opencascade
via pybind11, 2020. https://github.com/trelau/pyOCCT. 4

[7] A Vaswani. Attention is all you need. Advances in Neural
Information Processing Systems, 2017. 2

10

	Method and network architectures
	Sequential edge-vertex representation
	Details of edge-face adjacency generation
	Details of edge-vertex adjacency generation
	Details of geometry generation network

	Experiments
	Implementation Details
	Shape Retrieval
	Qualitative Results of the Ablation Study
	More Examples Generated by DTGBrepGen

