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Supplementary Material

1. Overview
This supplementary material includes details of data col-
lection and annotation, ablation study, Tree Change (TC)
visualizations and Cross-Domain Anti-Spoofing (CD-FAS)
implementations and experiments, which are not included
in the main paper due to page limitations.

In this supplementary material, we begin by detailing the
tree data collection process using a UAV, as shown in Fig-
ure 1. Figure 2 presents the specialized software utilized
for cropping individual tree regions. Additionally, Figure 3
provides examples of the data annotations. Furthermore, we
offer a comprehensive ablation study to verify the effective-
ness and generalizability of Hierarchical Siamese Networks
(HSNs), as shown in Table 1. Finally, Figure 4 showcases
additional visual examples to further illustrate the effective-
ness of our proposed HSNs, and Figure 5 shows a failed
example of Tree Change Detection (TCD).

1.1. Data collection process
To elucidate the tree data collection process, Figure 1 of-
fers a detailed visual exposition of the procedures employed
by the UAV. Figure 1 (a) captures the UAV in a live oper-
ational setting, meticulously gathering visual data with its
integrated camera.

The UAV, engaged in the tree data collection task, cap-
tures a series of high-resolution images through its mounted
camera system. This device is an integrated platform of ad-
vanced technology, as demonstrated in Figure 1 (b). The
UAV encompasses a resilient battery, a precise GNSS an-
tenna that ensures exact location tracking, a camera capa-
ble of capturing intricate details, and a state-of-the-art vi-
sual obstacle avoidance mechanism that affirms the vehi-
cle’s safe traversal over complex terrains.

Furthermore, the UAV’s trajectory is controlled by a
UAV remote controller, as shown in Figure 1 (c). The
UAV remote controller is equipped with an array of nav-
igational controls that are critical for the precise manage-
ment of the UAV’s trajectory (the green lines in the screen
of the controller), ensuring that the UAV adheres to pre-
determined routes for systematic data collection. The im-
ages initially captured by the UAV are illustrated in Fig-
ure 1 (d). In this paper, around 220 images were recorded
along the UAV’s trajectory in each flight task. These im-
ages are used for constructing a Digital Orthophoto Model
(DOM), a task undertaken with the aid of specialized DJI
Terra software. This DOM combines accurate geographical
data with high-fidelity photographic images, resulting in a

product that went through an extensive registration process.
This rigorous approach yielded an impressive geographic
registration with a root mean square error of under 4 cm
and a reprojection error confined to within a single pixel.

Figure 2 showcases the application of the ’Environment
for Visualizing Images’ (ENVI) software platform in delin-
eating regions of interest (ROIs) for individual trees, a pro-
cess enhanced by GPS data to ensure precise location map-
ping. ENVI is a software platform used for processing and
analyzing geospatial imagery. It is widely used in remote
sensing and the analysis of satellite and aerial imagery data.

1.2. Data annotation
Figure 3 illustrates the six distinct phenological tree states
we annotated in the dataset: green foliage, yellowing leaves,
branches, fallen leaves or sprouts, blossom, and destruction.
Specifically, fallen leaves and sprouts are assigned a unified
label as they both signify transitional phases, marking the
point at which a tree begins to undergo seasonal changes.
In the tree-change detection task, the inconsistent states in-
dicate the presence of Tree Changes (TCs), otherwise is no
change.

1.3. Ablation study
In order to verify the effectiveness of HSNs, the hyper-
bolic space is applied on the Siamese network backbone
of ResNet18 [3], ResNet101, MobileViT [5], VGG16 [7],
InceptionV3 [10], and MobileNet [8], respectively. Ac-
cording to the hyperparameter analysis in Section 5.3 in
the main paper, for the deep Siamese network based on
ResNet101+HS, we set c to 1.0; otherwise, c is set to
0.3. The ball dimension is set to eight. As shown in
Table 1, the ResNet101+HS has achieved the best per-
formance amongst all the methods, in terms of both ac-
curacy and F1-score. Moreover, compared to Euclidean-
based Siamese networks (ESNs), HSNs enhance the results
by 13.5%, 24.0%, 23.1% ,6.8%, 15.6%, and 8.4% with
ResNet18, ResNet101, MobileViT, VGG16, InceptionV3,
and MobileNet, respectively, in terms of F1-score. The re-
sults indicate that our proposed HSNs are generalizable and
can largely improve the performance of TCD. We can draw
a conclusion that there is hyperbolicity in TCD and HSNs
can better represent TCs with hyperbolicity.

1.4. TC Visualization
Figure 4 displays class activation maps of TCs with Grad-
cam [6]. The specific states of the trees have been denoted
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Figure 1. The illustration of the tree data collection process with UAV. (a) the realistic scenario of data collection, (b) the UAV platform
and camera, (c) the final UAV remote controller, and (d) examples of captured pictures during the flight mission.

Figure 2. The user interface of ENVI software for tree cropping.

in the figure. The inconsistent states indicate the existence
of TC. From Figure 4, it can be seen that the HSN ap-
pears to effectively concentrate on the tree regions, suc-
cessfully avoiding misinterpretations caused by illumina-
tion and background. For instance, in the first row, the HSN
is able to mitigate the impact of shadows and concentrates
on extracting features from the tree regions. Additionally,
in the examples featuring blossoms, the HSN demonstrates
its effectiveness by focusing more accurately on the flower
regions compared to the ESN. This enhanced capability of
the HSN illustrates its potential for more precise and accu-
rate feature extraction in varied environmental conditions.

Moreover, Figure 5 illustrates a scenario where the TCD
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Figure 3. The illustration of tree annotation.

process failed. This failure can be attributed to the sig-
nificant influence of shadows, which underscores the chal-
lenges faced in accurately detecting TCs in certain environ-
mental conditions. This example highlights the need for
further refinement in the TCD to handle complex scenarios
more effectively.

1.5. CD-FAS implementations and experiments
To further prove the effectiveness and impacts of HSN, we
evaluate the HSN on cross-domain face anti-spoofing (CD-
FAS) tasks, showcasing its significance in AI. CD-FAS is a
task that discerns between genuine human faces and coun-
terfeit representations in biometric authentication systems.
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Figure 4. The visualizations of tree change with Gradcam.

Table 1. Ablation study of HSN in terms of F1-score.

Method F1
VGG16 0.5716

VGG16+HSN 0.6106
InceptionV3 0.5673

InceptionV3+HSN 0.6556
MobileNet 0.4592

MobileNet+HSN 0.4979
ResNet18 0.5331

ResNet18+HSN 0.6053
MobileViT 0.5655

MobileViT+HSN 0.6910
ResNet101 0.5947

ResNet101+HSN 0.7372

Image pair ESN HSN

Green
foliage

Green
foliage

Shadow

Figure 5. A failed example of tree-change detection.

This task essentially involves identifying pairwise changes,
similar to the process of detecting changes in a tree. Four
popular benchmark datasets was used, including Oulu-NPU
(O) [1], CASIA (C) [15], Idiap Replay Attack (I) [2], and
MSU-MFSD (M) [13]. Following prior works, we treat

Table 2. Evaluation upon convergence: Evaluation of cross-
domain face anti-spoofing among CASIA (C), Idiap Replay (I),
MSU-MFSD (M), and Oulu-NPU (O) databases in terms of HTER
and AUC (HTER↓/AUC↑). Methods are compared at their std
performance based on the last 10 epochs.

Method (%) OCI → M OMI → C OCM → I ICM → O
SSDG-R [4] 1.21 / 1.35 0.89 / 1.10 1.14 / 1.31 1.29 / 0.96

SSAN-R [12] 3.68 / 3.78 2.91 / 2.83 8.04 / 9.03 3.74 / 4.69
PatchNet [11] 1.13 / 0.87 1.98 / 1.89 2.76 / 1.35 1.80 / 1.92
SA-FAS [9] 0.92 / 0.82 0.72 / 0.58 0.85 / 0.99 0.55/ 0.59

Ours 0.85 / 0.32 1.01 / 0.28 1.22 / 0.78 0.79/ 0.24

each dataset as one domain and apply the leave-one-out
test protocol to evaluate their cross-domain generalization.
Specifically, the OCI→M is referred as the protocol that
trains on Oulu-NPU, CASIA, Idiap Replay attack and tests
on MSU-MFSD. OMI→C, OCM→I and ICM→O are de-
fined in a similar fashion.

The input images are cropped using MTCNN [14] and
resized to 256×256. For fair comparisons with state-of-the-
art (SoTA) methods [4, 9, 11, 12], we use the same ResNet-
18 backbone. We train the network with the SGD optimizer
and an initial learning rate of 5 × 10−3, which is decayed
by 2 at epoch 40 and 80, and the total training epoch is 100.
We set the weight decay as 5 × 10−4 and the batch size as
96 for each training domain.

For fair comparisons with state-of-the-art (SoTA) meth-
ods [4, 9, 11, 12], we adapt the learning strategy and eval-
uation protocol of SA-FAS [9], reporting the average per-
formance over the last 10 epochs after convergence. Three
metrics are employed: Half Total Error Rate (HTER) and
Area Under the Curve (AUC). While HTER and AUC as-
sess theoretical performance, TPR at a specific FPR effec-



tively reflects practical model performance.
In addition to the mean accuracy shown in Table 2, Table

2 illustrates the standard deviation, indicating the stability
of each method’s performance. Most methods converge to
a relatively stable state, especially our method. SSAN-R
[12] incorporating adversarial loss exhibit a relatively larger
standard deviation, highlighting the instability inherent in
adversarial learning.
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On the effectiveness of local binary patterns in face anti-
spoofing. In 2012 BIOSIG-proceedings of the international
conference of biometrics special interest group (BIOSIG),
pages 1–7. IEEE, 2012. 3

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1

[4] Yunpei Jia, Jie Zhang, Shiguang Shan, and Xilin Chen.
Single-side domain generalization for face anti-spoofing. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 8484–8493, 2020. 3

[5] Sachin Mehta and Mohammad Rastegari. Mobilevit: light-
weight, general-purpose, and mobile-friendly vision trans-
former. arXiv preprint arXiv:2110.02178, 2021. 1

[6] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the IEEE in-
ternational conference on computer vision, pages 618–626,
2017. 1

[7] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 1

[8] Debjyoti Sinha and Mohamed El-Sharkawy. Thin mobilenet:
An enhanced mobilenet architecture. In 2019 IEEE 10th
annual ubiquitous computing, electronics & mobile commu-
nication conference (UEMCON), pages 0280–0285. IEEE,
2019. 1

[9] Yiyou Sun, Yaojie Liu, Xiaoming Liu, Yixuan Li, and Wen-
Sheng Chu. Rethinking domain generalization for face anti-
spoofing: Separability and alignment. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 24563–24574, 2023. 3

[10] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1–9, 2015.
1

[11] Chien-Yi Wang, Yu-Ding Lu, Shang-Ta Yang, and Shang-
Hong Lai. Patchnet: A simple face anti-spoofing frame-
work via fine-grained patch recognition. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 20281–20290, 2022. 3

[12] Zhuo Wang, Zezheng Wang, Zitong Yu, Weihong Deng, Jia-
hong Li, Tingting Gao, and Zhongyuan Wang. Domain gen-
eralization via shuffled style assembly for face anti-spoofing.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 4123–4133, 2022. 3, 4

[13] Di Wen, Hu Han, and Anil K Jain. Face spoof detection with
image distortion analysis. IEEE Transactions on Information
Forensics and Security, 10(4):746–761, 2015. 3

[14] Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao.
Joint face detection and alignment using multitask cascaded
convolutional networks. IEEE signal processing letters, 23
(10):1499–1503, 2016. 3

[15] Zhiwei Zhang, Junjie Yan, Sifei Liu, Zhen Lei, Dong Yi,
and Stan Z Li. A face antispoofing database with diverse
attacks. In 2012 5th IAPR international conference on Bio-
metrics (ICB), pages 26–31. IEEE, 2012. 3




