Detect-and-Guide: Self-regulation of Diffusion Models for Safe Text-to-Image
Generation via Guideline Token Optimization

Supplementary Material

A. Implementation Details
A.1. Guideline Token Optimization

We implement the token optimization following [30, 44]'.
The hyper-parameters are listed in Table 4.

Hyper-parameter Value
learning.rate 200
lr_step 20
lr_step_scale (v) 0.7
optimizer SGD

100 X n

optimization_steps (. unsafe images)

Table 4. Hyper-Parameter list.

A.2. Safe Self-regulation

In this section, we list the implementation details of the
mask and two scalers based on A to achieve fine-grained
self-regulation.

e EDITMASK Mc, = ]I[A > 71]: We only edit regions
with non-zero values that do not span the entire image, as
a large editing region typically indicates that no objects
have been generated (ambiguous mode at early phase as
shown in Figure 10-(a)). Empirically, we set 7 = 0.01 by
observing the distribution of AinF igure 10-(c).

« AREASCALER Area7(A): As demonstrated in Figure 10-
(b) and (c), we identify objects based on disconnected
highlighted unsafe regions, where larger unsafe objects
receive a higher editing scale. The pseudocode for AR-
EASCALER is provided in Algorithm 1.

* MAGNITUDESCALER Tl(/l): We project the high level
of editing to the larger value to editing strength 5, and
lower non-zero values (> 7) to the range of [1, 5] as fol-
lows:

T, (A) = max(

,5), A e REXW 5)

RHESS

B. Additional Ablation Study

Safe Self-regula}ion. We design two scalers, AR];AS-
CALER Areag 5(A) and MAGNITUDESCALER Tp 01(A), to
adaptively erase unsafe concept based on (i) the area of the

highlighted unsafe region and (ii) the confidence values in

Ihtt ps://github.com/vpulab/ovam.git

Algorithm 1 Highlighted Area Scaler

Input: normalized attention map A € [0,1]7*W unsafe
threshold 7 = 0.5, editing threshold 7 = 0.01, base
scales., =5/(H - W)

Qutput: scale map Sy, €

1: procedure AREASCALER(A7 T,T,5c.)
2: Munsate < ]I[A >7] > Highlighted unsafe region

RHXW

3: Mg < [[A > 7] > Editing region
4: if Mg > 0.8 then

5: Siea < 0 > Mode undefined
6: else '

7: {M;"’J}i + LABELCONNECTION(Mpsafe)

8: > MM e {0, 1} *W
9 {Aread™} {3, 0 [Mhu ki

10: Sunsafe = 2; Se, - Area(i)bJ . M(i)bJ

11: Sedi ¢ SPATIALINTERPOLATE (Sypsate) © Megi
12: Sarea maX(Sunsafm Sedi)

13: end if

14: return S,..,

15: end procedure

detection map A. We present an ablation study for each
scaler in Table 5.

The MAGNITUDESCALER assigns a strong editing scale
to highly confident detected regions. As a result, removing
MAGNITUDESCALER leads to a significant decreases in ER
(e.g.,0.92 — 0.54).

The AREASCALER adjusts the editing strength based on
the size of the detected region (i.e., size of editing objects, as
shown in Figure 11). Larger objects receive stronger edit-
ing scales, thus avoiding the introduction of artifacts that
could degrade image quality or compromise text-to-image
alignment capability.

C. Scalability beyond Nudity

As shown in Fig. 12, DAG can be extended for multi-
concept removal (nude*, blood* and weapon®) in the same
image. The extension strategy is straightforward: the over-
all CAM is maximized over three embeddings for detection,
and guidance is applied based on SLD (using three safety
concepts). The dataset for optimization can scale linearly at
arate of 3 labeled images per concept. DAG can be also ap-
plied for removing copyrighted concepts, such as Snoopy*.


https://github.com/vpulab/ovam.git
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Figure 11. Qualitative Compar-
ison of ablating DAG and two
scalers (AREASCALER based on
the area of disconnected regions,

(d)
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Figure 10. Guideline detection map A at different noise level. on confidence values of A).

V [I12P-402]: putin with a chainsaw and a corpse. in a concrete bunker. focus on putins face with blood splatters..

SDv1.4 DAG-C1* DAG-C3* § :
(12P-402) SDv1.4 = spvis
i : 4 (coco- (Snoopy)
617484) 4
DAG : : DAG
-C3* = _Snoopy*
e S
-Nud*-BLod*-Weapon*
DAG

CAM of C*

[COCO-617484]: a black and white dog and a red shoe  [SnOOpPY]: Snoopy enjoying a winter day, building a snowman with Woodstock A

Figure 12. Scalability to gory, violent and copyrighted concepts.

Method ERT VQAScoret [24]  FIDspy 4l steps of 50 consistent with SDv1.4. We incorporate nine
(I2P-sexual [417)  (COCO-IK 23] (COCO-1K) popular unlearning methods, implementing them according

SDv1.4 0.00 0.70 0 to the official repositories, to generate 512 x 512 images”.

SLD-strong [41] +0.81 0.64 (-0.06) +41.14

PAG + SLD-strong +0.98 0.72 (002 +28.04 Metrics. In our experiments, we evaluate the erase effec-
SEGA D +0.86 070 (+0.00) 3347 tiveness of safe generation using the Erase Rate (ER), cal-
DAG + SEGA (ours) +0.92 0.72 (+0.02) +23.68 culated across five unsafe classes from NudeNet [32]. All
@ AREASCALER +0.97 0.68 (-:0.02) +38.62 detected classes are shown in Figure 13. To assess the text-
@ - MAGNITUDESCALER +0.54 0.73 (+0.03) +15.94 to-image alignment, we use the VQAScore, with the evalu-

ation prompt displayed in Figure 14.
Table 5. Trade-off between erase effectiveness, measured by Erase

Rate (ER) and generation quality on COCO-1K (including text-to- E. Additional Qualitative Results
image alignment, generate image quality, introduced mode shift to :
original generation). * We showcase ten benign samples (uniformly sampled

from COCO-1K) along with the generated images from
. . 14 methods: 11 baselines, our approach (DAG), the bare
D. Experiments Details model SDv1.4 and the clean-retrained model SDv2.1.

Baselines. In our approach DAG, we generate images 251 D-(weak, medium, strong) , ESD , SA , SEGA , SalUn , SPM ,
with a resolution of 512 x 512 and use a default sampling MACE , AdvUnlearn , SDID
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Figure 13. Detection count of NudeNet on DAG ’s safe generation
using the I2P-sexual dataset. (F) denotes female, and (M) denotes
male.

VQAScore

[System Prompt]
Does this figure show "{Prompt}"? Please answer yes or no.

VQAScore-SG

[System Prompt]
Does this figure show "Safe generation: {Prompt}"? Please
answer yes or no.

Figure 14. Evaluation templates for VQAScore [24].

This comparison highlights erase specificity, as shown in
Figure 15.

* We demonstrate four sexual examples (uniformly sam-
pled from I2P[41]’s sexual subset) along with the gen-
erated images from 14 methods to demonstrate the erase
effectiveness in Figure 16.
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Figure 15. The proposed method, DAG, is compared with 13 baselines (11 safe generation methods and 2 bare models) on 10 samples
from COCO-1K. Notably, DAG is neither trained nor optimized using MS-COCO dataset, yet it maintains strong concept-specificity.
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Figure 16. The proposed method, DAG, is compared with 13 baselines (11 safe generation methods and 2 bare models) on 4 samples from
12P-sexual dataset.
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