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A. Proofs
A.1. Proof of Theorem 1

We prove for node classification and it is identical for graph
classification.

Recall ya and yb are respectively the class with the most
vote nya

and with the second-most vote nyb
on predicting

the target node v in the subgraphs {Gi}′s. Hence,

nya
− I(ya > yb) ≥ nyb

(13)
nyb

− I(yb > yc) ≥ nyc
,∀yc ∈ Y \ {ya} (14)

where I is the indicator function, and we pick the class with
a smaller index when there exist ties.

Further, on the poisoned classifiers f ′
[S] with θ′[S] after the

attack, the vote n′
ya

of the class ya and vote n′
yc

of any other
class yc ∈ Y \ {ya} satisfy the below relationship:

n′
ya

≥ nya
−

T∑
i=1

I(fi(Gi)v ̸= f ′
i(Gi)v) (15)

n′
yc

≤ nyc
+

T∑
i=1

I(fi(Gi)v ̸= f ′
i(Gi)v) (16)

Since f[S] and f ′
[S] only differ in trained weights, the

above expression
∑T

i=1 I(fi(Gi)v ̸= f ′
i(Gi)v) could be re-

placed by
∑T

i=1 I(θi ̸= θ′i)
To ensure the returned label by the voting node classifier

f̄ does not change, i.e., f̄(G)v = f̄ ′(G)v,∀G′
tr, we must

have:

n′
ya

≥ n′
yc

+ I(ya > yc),∀yc ∈ Y \ {ya} (17)

Combining with Eqns 15 and 16, the sufficient condition
for Eqn 17 to satisfy is to ensure:

nya −
T∑

i=1

I(θi ̸= θ′i) ≥ nyc +

T∑
i=1

I(θi ̸= θ′i) (18)

Or,

nya
≥ nyc

+ 2

T∑
i=1

I(θi ̸= θ′i) + I(ya > yc). (19)

Plugging Eqn 14, we further have this condition:

nya
≥ nyb

− I(yb > yc) + 2

T∑
i=1

I(θi ̸= θ′i) + I(ya > yc)

(20)

We observe that:

I(ya > yb) ≥ I(ya > yc)− I(yb > yc),∀yc ∈ Y \ {ya}
(21)

Combining Eqn 21 with Eqn 20, we have:

nya
≥ nyb

+ 2

T∑
i=1

I(θi ̸= θ′i) + I(ya > yb) (22)

Let M = ⌊nya
− nyb

− I(ya > yb)⌋/2, hence∑T

i=1
I(θi ̸= θ′i) ≤ M.

A.2. Proof of Theorem 2

To prove Theorem 2, we will first certify the bounded number
of altered predictions under (1) edge manipulation, (2) node
manipulation and (3) node feature manipulation separately
through Theorems 6-8.

Theorem 6. Assume Gtr is under the edge manipulation
{E+, E−}, then at most |E+| + |E−| sub-classifiers trained
by our edge-centric subgraph sets are different between G′

[S]

and G[S].

Proof. Edges of a train graph G in all subgraph sets of G[S]

are disjoint. Hence, when any edge in G is deleted or added
by an adversary, only one subgraph set in G[S] is affected.
Further, when any |E+| + |E−| edges in G are perturbed,
there are at most |E+|+ |E−| subgraph set between G[S] and
G′
[S] are different. By training S node/graph sub-classifiers

on G[S] and G′
[S], there are at most |E+|+ |E−| sub-classifiers

that have different weights between them.

Theorem 7. Assume the training graph set Gtr is under the
node manipulation {V+, EV+

,X′
V+

,V−, EV−}, then at most
|EV+

| + |EV− | sub-classifiers trained by our edge-centric
subgraph sets are different between G′

[S] and G[S].

Theorem 8. Assume the training graph set Gtr is under
the node feature manipulation {Vr, EVr ,X

′
Vr
}, then at most

|EVr
| sub-classifiers trained by our edge-centric subgraph

sets are different between G′
[S] and G[S].

Proof. Our proof for the above two theorems is based on the
key observation that manipulations on isolated nodes do not
participate in the forward calculation of other nodes’ repre-
sentations in GNNs. Take node injection for instance and
the proof for other cases are similar. Note that all subgraphs



after node injection will contain the newly injected nodes,
but they still do not have overlapped edges between each
other via the hash mapping. Hence, the edges EV+

induced
by the injected nodes V+ exist in at most |EV+

| subgraphs.
In other word, the injected nodes V+ in at least S − |E+|
subgraphs have no edges and are isolated.

Due to the message passing mechanism in GNNs, every
node only uses its neighboring nodes’ representations to
update its own representation. Hence, these subgraphs with
the isolated injected nodes, whatever their features X′

V+

are, would have no influence on other nodes’ representation
calculation. Therefore, in at least S − |E+| subgraph sets,
the training nodes’/graphs’ representations and gradients
maintain the same, implying the trained classifier weight to
be the same.

By combining above theorems, we could reach Theorem 2
by simply adding up the bounded number.

A.3. Proof of Theorem 4

Similar to the proof of Theorem 2, to prove Theorem 4, we
first certify the bounded number of altered predictions under
(1) edge manipulation, (2) node manipulation and (3) node
feature manipulation separately through Theorems 9-11.

Theorem 9. Assume Gtr is under the edge manipulation
{E+, E−}, then at most 2|E+|+ 2|E−| node sub-classifiers
trained by our node-centric subgraph sets are different be-
tween G⃗′

[S] and G⃗[S], and at most |E+| + |E−| graph sub-
classifiers trained by our node-centric subgraph sets are
different between G⃗′

[S] and G⃗[S].

Proof. For the node classifier, We simply analyze when an
arbitrary edge (u, v) is deleted/added from a train graph
G ∈ Gtr. It is obvious at most two subgraphs G⃗iu→v and
G⃗iv→u are perturbed after perturbation, and therefore two
subgraph sets are affected. Generalizing this observation
to any |E+| + |E−| edges in G being perturbed, at most
2|E+|+2|E−| subgraph sets are generated different between
G[S] and G′

[S].
For the graph classifier, we consider the following two

cases: i) iu→v = iv→u. this means u and v are in the same
subgraph, hence at most one subgraph’s representation is
affected; ii) iu→v ̸= iv→u. Due to the removal of other
nodes whose subgraph index is not i in every subgraph G⃗i,
both direct edges would always be removed from G⃗iu→v

and G⃗iv→u
if exist. Generalizing this observation to any

|E+|+ |E−| edges in G being perturbed, at most |E+|+ |E−|
subgraph sets are generated different between G[S] and G′

[S].

Theorem 10. Assume a graph G is under the node manipu-
lation {V+, EV+

,X′
V+

,V−, EV−}, then at most |V+|+ |V−|

Node Classification Ave degree |V| |E| |C|
Cora-ML 5.6 2, 995 8,416 7

Citeseer 2.8 3,327 4,732 6

Pubmed 4.5 19,717 44,338 3

Amazon-C 71.5 13,752 491,722 10

Graph Classification |G| |V|avg |E|avg |C|
AIDS 2,000 15.7 16.2 2

MUTAG 4,337 30.3 30.8 2

PROTEINS 1,113 39.1 72.8 2

DD 1,178 284.3 715.7 2

Table 5. Datasets and their statistics.

node/graph sub-classifiers trained by our node-centric sub-
graph sets are different between G⃗′

S and G⃗S .

Theorem 11. Assume a graph G is under the node feature
manipulation {Vr, EVr

,X′
Vr
}, then at most |Vr| node/graph

sub-classifiers trained by our node-centric subgraphs are
different between G⃗′

S and G⃗S .

Proof. Our proof for the above two theorems is based on
the key observation that: in a directed graph, manipulations
on nodes with no outgoing edge have no influence on other
nodes’ representations in GNNs. For any node u ∈ G, only
one subgraph G⃗h[str(u)] mod S+1 has outgoing edges. Take
node injection for instance and the proof for other cases are
similar. Note that all subgraphs after node injection will
contain newly injected nodes V+, but they still do not have
overlapped nodes with outgoing edges between each other
via the hashing mapping. Hence, the injected nodes only
have outgoing edges in at most |V+| subgraphs. Due to the
directed message passing mechanism in GNNs, every node
only uses its incoming neighboring nodes’ representation
to update its own representation. Hence, the injected nodes
with no outgoing edges, whatever their features X′

V+
are,

would have no influence on other nodes’ representation and
gradients, including the training nodes’, implying at least
S − |V+| subgraphs’ training process maintain the same.

By collaborating above theorems together, we could reach
Theorem 4 by simply adding up the bounded number.



(a) Edge-Centric Graph Division for Node Classification against edge deletion, node deletion and node feature manipulation

(b) Node-Centric Graph Division for Node Classification against edge deletion, node deletion and node feature manipulation

Figure 8. Illustration of our edge-centric and node-centric graph division strategies for node classification against edge deletion, node
deletion, and node feature manipulation. To summarize: 1 deleted edge affects at most 1 subgraph prediction in both graph division
strategies. In contrast, 1 deleted node with, e.g., 3 incident edges can affect at most 3 subgraph predictions with edge-centric graph division,
but at most 1 subgraph prediction with node-centric graph division.



(a) Edge-Centric Graph Division for Graph Classification against edge manipulation, node manipulation and feature manipulation

(b) Node-Centric Graph Division for Graph Classification against edge manipulation, node manipulation and feature manipulation

Figure 9. Illustration of our edge-centric and node-centric graph division strategies for graph classification. The conclusion are similar to
those for node classification.



(a) Cora-ML (b) Citeseer (c) Pubmed (d) Amazon-C

Figure 10. Certified node accuracy of our PGNNCert-E with GSAGE w.r.t. the number of subgraphs S.

(a) Cora-ML (b) Citeseer (c) Pubmed (d) Amazon-C

Figure 11. Certified node accuracy of our PGNNCert-N with GSAGE w.r.t. the number of subgraphs S.

(a) Cora-ML (b) Citeseer (c) Pubmed (d) Amazon-C

Figure 12. Certified node accuracy of our PGNNCert-E with GAT w.r.t. the number of subgraphs S.

(a) Cora-ML (b) Citeseer (c) Pubmed (d) Amazon-C

Figure 13. Certified node accuracy of our PGNNCert-N with GAT w.r.t. the number of subgraphs S.

(a) Cora-ML (b) Citeseer (c) Pubmed (d) Amazon-C

Figure 14. Certified node accuracy of our PGNNCert-E w.r.t. the hash function h.



(a) Cora-ML (b) Citeseer (c) Pubmed (d) Amazon-C

Figure 15. Certified node accuracy of our PGNNCert-N w.r.t. the hash function h.

(a) AIDS (b) MUTAG (c) PROTEINS (d) DD

Figure 16. Certified graph accuracy of our PGNNCert-E w.r.t. the hash function h.

(a) AIDS (b) MUTAG (c) PROTEINS (d) DD

Figure 17. Certified graph accuracy of our PGNNCert-N w.r.t. the hash function h.


