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A. The Complete Derivation for Loss-gradient Guidance 003

As mentioned in Section 4.1, we provide a detailed derivation of our main method in the supplementary materials. We first 004
provide an explanation for Equation (7) in our main text. 005

∇xt log p(xt | g) = ∇xt log p(xt) +∇xt log p(g | xt). (1) 006

According to Bayes’ theorem, p(xt | g) can be expressed as: 007

p(xt | g) =
p(g | xt)× p(xt)

p(g)
. (2) 008

Taking the logarithm on both sides of the equation, we obtain: 009

log p(xt | g) = log p(g | xt) + log p(xt)− log p(g). (3) 010

Differentiating both sides of the equation with respect to xt, we can ignore p(g) as it is independent of xt. Thus, the equation 011
can be expressed as: 012

∇xt
log p(xt | g) = ∇xt

log p(xt) +∇xt
log p(g | xt). (4) 013

Thus, we have completed the derivation of Equation (7) in our main text. Next, we will continue with the detailed derivation 014
of Equation (9) in Section 4.1, which can be represented as: 015

ϵ′ϕ = ϵϕ(xt, t) + ρ
√
1− αt∇xt ∥g −M(x̂0(xt))∥22

= ϵϕ(xt, t) + ρ
√
1− αt∇Lg,

(5) 016

According to Equations (6) in our main text, we can deduce: 017

ϵϕ(xt, t) = −
√
1− αt∇xt

log p(xt),

ϵ′ϕ = −
√
1− αt∇xt

log p(xt | g).
(6) 018

Therefore, we can easily obtain: 019
ϵ′ϕ = ϵϕ(xt, t)−

√
1− αt∇xt log p(g | xt). (7) 020

It can be inferred from the main text that ∇xt
log p(g | xt) ≃ −ρ∇xt

∥g −M(x̂0(xt))∥22. Thus, we can derive that: 021

ϵ′ϕ = ϵϕ(xt, t) + ρ
√
1− αt∇xt

∥g −M(x̂0(xt))∥22
= ϵϕ(xt, t) + ρ

√
1− αt∇Lg,

(8) 022

We have also provided the pseudocode for our training phase, which can be found in Algorithm 1. 023
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Algorithm 1 Pseudo Code for Our Guidance in the training stage

Require: The low-resolution image xt, the high-resolution image x0, the forward operator M, no-guidance training itera-
tions λt, total training iterations λT

1: if training iterations < λt then
2: Predict the noise ϵϕ(xt, t) through the denoising model
3: Take gradient descent step on:

∇ϕ ∥ϵ− ϵϕ (xt, t)∥2 (9)

4: return
5: end if
6: if λt ≤ training iterations < λT then
7: Input the high-resolution image x0 into the forward operator M to get guidance g

g = M(x0) (10)

8: Predict the noise ϵϕ(xt, t) through the denoising model
9: Optimize the predicted noise ϵϕ(xt, t) using guidance g

ϵ′ϕ = ϵϕ(xt, t) + ρ
√
1− αt∇xt

∥g −M(x̂0(xt))∥22
= ϵϕ(xt, t) + ρ

√
1− αt∇Lg,

(11)

10: Take gradient descent step on:
∇ϕ

∥∥ϵ− ϵ′ϕ
∥∥2 (12)

11: return
12: end if
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Figure 1. Visual comparison of infrared image super-resolution with SOTA methods on TNO and RoadScene datasets.

B. Additional Comparison for Our Proposed Approach024

Qualitative Comparison. The qualitative results shown in Figure 1 highlight the superior visual performance of our method025
compared to other approaches. Additional examples are provided in the supplementary materials. For a comprehensive026
evaluation, we selected representative images from the TNO and RoadScene datasets for qualitative analysis. Our method027
preserves more accurate thermal details and clear object contours on the TNO dataset, avoiding artifacts and noise commonly028
observed in other methods. For the RoadScene dataset, our approach excels in reconstructing fine textures and maintaining029
structural consistency, particularly in complex traffic scenarios where other methods struggle with blurring and misalignment.030
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Datasets TNO RoadScene

Methods CLIP-IQA↑ MUSIQ↑ CLIP-IQA↑ MUSIQ↑
Low Resolution - 0.2020 22.507 0.1487 22.349
ESRGAN [7] ECCV’18 0.2625 33.033 0.2607 44.470
RealSR-JPEG [4] CVPR’20 0.4271 46.562 0.4270 52.860
BSRGAN [11] CVPR’21 0.4006 53.305 0.3139 53.491
SwinIR [6] CVPR’21 0.2656 32.910 0.1890 34.677
RealESRGAN [8] ICCV’21 0.3828 48.3307 0.2933 49.853
HAT [1] CVPR’23 0.2791 33.961 0.2247 35.413
DAT [2] ICCV’23 0.2854 34.130 0.2351 34.655
ResShift [10] NeurIPS’23 0.4745 50.546 0.3607 51.528
CoRPLE [5] ECCV’24 0.2601 30.516 0.2018 27.701
SinSR [9] CVPR’24 0.6159 54.027 0.5207 54.184
Bi-DiffSR [3] NeurIPS’24 0.3106 34.883 0.2519 38.543
DifIISR Ours 0.6218 54.601 0.5302 54.568
High Resolution - 0.2018 30.074 0.1604 40.864

Table 1. No-reference Metrics Comparison of infrared image super-resolution with SOTA methods on TNO and RoadScene datasets.

These results demonstrate the distinct advantages of our approach in producing high-quality visual outputs across diverse 031
datasets. 032
Quantitative Comparison. Table 1 provides a quantitative analysis of our method on the TNO and RoadScene datasets 033
compared to various approaches. Our method consistently achieves the best performance across all metrics on both datasets, 034
demonstrating its effectiveness in evaluating and enhancing image quality. On the TNO dataset, our approach excels in 035
capturing critical features under challenging scenarios, aligning well with human perceptual judgments. Similarly, on the 036
RoadScene dataset, our method outperforms others across all evaluation metrics, showcasing its robustness and superior 037
capability in handling diverse and complex scenes. 038

C. More Ablation for Our Dual Guidance 039

C.1. Ablation for different visual guidance 040

In the choices for visual guidance, we utilized MSE and SSIM as replacements. The following is the description of these loss 041
functions. SSIM (Structural Similarity Index) loss is a visual loss function that measures the similarity between two images 042
based on their contrast, and structure. The SSIM loss is defined as: 043

LSSIM = 1− SSIM(x, y) 044

where SSIM(x, y) measures the structural similarity between the images x and y. MSE (Mean Squared Error) loss is a 045
common loss function that measures the average squared difference between predicted and target values. It is defined as: 046

LMSE =
1

N

N∑
i=1

(xi − yi)
2 047

where xi and yi are the predicted and target values, respectively, and N is the total number of pixels. Table 2 presents our 048
ablation results, demonstrating that our method outperforms other visual guidance approaches across all metrics. 049

C.2. Ablation for different perceptual guidance 050

LPIPS and Edge were adopted as substitutes for the replacement options of perceptual guidance. LPIPS (Learned Perceptual 051
Image Patch Similarity) is a perceptual loss function that measures the perceptual similarity between two images using deep 052
network features. It is defined as: 053

LLPIPS =
∑
l

wl∥ϕl(x)− ϕl(y)∥2 054
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Visual Guidance PSNR CLIP-IQA mAP mIoU
- 33.466 0.5102 31.2 40.9

SSIM Based 34.010 0.5189 31.8 41.5
MSE Based 34.244 0.5278 31.7 41.3

Ours 34.575 0.5379 33.1 42.4

Table 2. Ablation study for different visual guidance.

Visual Guidance PSNR CLIP-IQA mAP mIoU
- 33.466 0.5102 31.2 40.9

LPIPS Based 33.954 0.5189 32.7 41.6
EDGE Based 33.823 0.5217 32.5 42.0

Ours 34.575 0.5379 33.1 42.4

Table 3. Ablation study for different perceptual guidance.

where ϕl represents features from the l-th layer, and wl are learned weights. Edge loss focuses on preserving edge details055
by comparing the edges of the generated image with the target image. Typically, edges are extracted using edge detection056
methods like Sobel or Canny filters, and the loss is defined as:057

LEDGE = ∥E(x)− E(y)∥2058

where E(·) represents the edge detection operator. The ablation results, shown in Table 3, indicate that our method performs059
better than other perceptual guidance strategies across all metrics.060
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