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Supplementary Material

A. Derivation for Solving w
The goal is to solve the optimal w that maximizes J(w).
We take the gradient of J(w) w.r.t. w and set it to zero as

∂J(w)

∂w
= 0, (8)

which leads to
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(9)
Considering J(w) is a scalar, we denote it as λ, the above
equation is equivalent to

λw = Sv
−1Sµw

= Sv
−1(z− µ̂)(z− µ̂)Tw

= Sv
−1(z− µ̂)α,

(10)

where α is another scalar. Therefore, the optimal solution
w∗ is along the direction of Sv

−1(z− µ̂).

B. More Results on MNIST
In Figure 11, we present more randomly selected results on
MNIST to demonstrate the effects of discriminative visual
attention. Column 2nd-5th show saliency maps generated
by DiffCAM and the baseline methods answering the ”Why
is” question. The last three columns present counterfactual
saliency maps to explain ”Why not”.

C. More Results on ImageNet
In Figure 12, we present more randomly selected results on
ImageNet. DiffCAM exhibits generally more accurate ob-
jection localization than the baselines. While most meth-
ods perform similar on some easier examples (e.g., large
animals), DiffCAM shows advantages in excluding noisy
backgrounds from the saliency map especially on harder
cases. For example, for the television image in the 4th
row, DiffCAM successfully recognizes the object region al-
though the model predicts the right class with a low proba-
bility.

D. Supplementary Material for Counterfactual
Explanation Experiments

D.1. Experimental Settings

(1) Dataset

CUB-200-2011 [54] is a bird dataset with 200 categories,
annotated with part location data. It includes a total of 15
parts, namely Back, Beak, Belly, Breast, Crown, Forehead,
Left Eye, Left Leg, Left Wing, Nape, Right Eye, Right Leg,
Right Wing, Tail, and Throat. For each part, the ground
truth per image is determined as the median pixel position
labeled by five different Mechanical Turk users.

(2) Network

Given that ResNet-50, as a deep residual network architec-
ture, has demonstrated exceptional performance and robust-
ness across a wide range of computer vision tasks, and is
widely used as a benchmark model in the XAI field, we
chose ResNet-50 as the baseline model. Counterfactual ex-
planations were generated using the output from its final
convolutional layer.

(3) Evaluation

For evaluation metrics, we basically align with GALORE.
To assess the effectiveness of Counterfactual Explana-
tion on the CUB-200-2011 dataset, which includes part
annotations, the ground truth is represented by G =
{(pi, ai, bi)}Ni=1, where parts are denoted as p, and a and
b refer to the target and counterfactual classes, respectively.
Define Precision (P) and Recall (R) as

P =
|{i | pi ∈ r, ai = a, bi = b}|

|{k | pk ∈ r}|

and

R =
|{i | pi ∈ r, ai = a, bi = b}|

|{i | (pi, ai, bi) ∈ G, ai = a, bi = b}|

. Additionally, the F1-score

F1 =
2 · P ·R
P +R

is introduced to comprehensively compare model perfor-
mance across different thresholds. Furthermore, Part In-
tersection over Union (PIoU) is defined to evaluate the se-
mantic consistency of part-level regions by calculating the
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Figure 9. Evaluation of counterfactual explanations. (Comparison with GALORE)

overlap between part segments r{a, b}(x) and r{b, a}(xc),
where k represents the number of part.

PIoU =

|{k | (pk, a, b) ∈ r{a, b}(x)} ∩ {k | (pk, b, a) ∈ r{b, a}(xc)}|
|{k | (pk, a, b) ∈ r{a, b}(x)} ∪ {k | (pk, b, a) ∈ r{b, a}(xc)}|

.

(11)

For a fair comparison, the heatmap size of the counter-
factual regions in Table 2 is restricted to match the receptive
field of a single unit, 1

7∗7 ≈ 0.02 of the area for ResNet-50.

D.2. More Results

Figure 10 displays the PIoU across different thresholds
and counterfactual classes for the model. The results indi-
cate that DiffCAM achieves better performance with sim-
ilar classes, compared to random selected class. This is
because DiffCAM maximizes the differences with similar
classes, enabling it to generate heatmaps that focus more on

features distinguishing the target class from similar classes.
For classes with greater differences, the heatmaps empha-
size the intrinsic features of the target class. Additionally,
with a heatmap threshold set to 20% of the image size, Dif-
fCAM reaches a PIoU value of 0.67.

E. Sanity Check Results

We use the ResNet-50 model pre-trained on ImageNet to
perform sanity check. Specifically, we progressively ran-
domize the parameters of the classification head (the fully
connected layer) and the deep convolutional layers in the
feature extractor. As shown in Figure 13, DiffCAM is un-
affected by randomization in the classification head since
its explanations are derived from deep features. However,
it is highly sensitive to parameter perturbations in the fea-
ture extractor. These observations confirm that DiffCAM is
closely tied to the model’s behavior rather than generating
explanations that are independent of the model and data.



Figure 10. PIoU of DiffCAM under different counterfactual
classes

F. Supplementary Material for Medical Imag-
ing Experiments

F.1. Experimental Settings

F.1.1 Task Background

Image classification models are essential for many med-
ical imaging applications, particularly in scenarios where
fine-grained annotations are insufficient. Explanations such
as saliency maps play a crucial role in building trust be-
tween AI systems and human experts. These saliency maps
also provide insights of abnormality localization from deep
models which automatically extract complex patterns in a
data-driven way. In this study, we build upon previous work
[7] by establishing an evaluation protocol using two chest
X-ray datasets with fine-grained annotations. Note that de-
spite the availability of segmentation or detection labels, we
use them as ground truth for evaluating saliency maps. We
simulate classification tasks using only image-level binary
labels for model training.

F.1.2 Dataset Preparation

The RSNA Pneumonia Detection Challenge dataset [6] con-
sists of chest X-ray images annotated with bounding boxes
(bbox) to indicate potential areas of pneumonia. Each im-
age is labeled with 1 (pneumonia present) or 0 (no pneumo-
nia), and bounding boxes are provided only for pneumonia
cases. The dataset includes a total of 14,863 images, split
into 81% for training, 9% for validation, and 10% for test-
ing. The training set contains 12,039 images from 4,870 pa-
tients with pneumonia, the validation set has 1,338 images
from 541 patients with pneumonia, and the test set consists
of 1,486 images from 601 patients with pneumonia.
The SIIM-ACR Pneumothorax Segmentation dataset [58]
contains chest X-ray images with run-length-encoded

(RLE) masks. Images with pneumothorax have associ-
ated masks, while those without do not. The dataset in-
cludes a total of 10,675 images, split similarly to the pneu-
monia dataset. The training set consists of 8,646 images
from 1,931 patients with pneumothorax, the validation set
has 961 images from 202 patients with pneumothorax, and
the test set comprises 1,068 images from 246 patients with
pneumothorax.

F.1.3 Model Training

For our study, we used an ImageNet-pretrained InceptionV3
model [11, 47] from Torch Hub as the base model. To adapt
it for binary classification, we replaced the final fully con-
nected layer with a two-class output layer. The model was
fine-tuned on medical datasets with cross-entropy loss to
improve diagnostic accuracy. Following the practice sug-
gested in the previous work [7], training was conducted
end-to-end with stochastic gradient descent (SGD), using a
batch size of 64, an initial learning rate of 0.0001, momen-
tum of 0.9, and weight decay of 0.00001. We selected the
model checkpoint with the lowest validation loss to ensure
optimal performance.

F.2. More Results

We present more examples of abnormality localization
on the two medical imaging datasets. From Figure 14,
DiffCAM delivers clearly more accurate localization on
lung abnormalities for the RSNA dataset. For the SIIM-
ACR dataset which is more challenging, we observe less
alignment between the complex ground truth masks and
the saliency maps generated by state-of-the-art XAI ap-
proaches. Nevertheless, we still notice the potential of Dif-
fCAM in discovering discriminative differences between
normal and abnormal X-ray images. For example, in the
last row of SIIM-ACR images, only DiffCAM highlights
the middle left region as part of key features relevant to
pneumothorax.

G. More Visualization Results

G.1. DiffCAM on Confusing Classes.

Fig. 16 presents additional qualitative examples from
CUB-200-2011 and ImageNet showing DiffCAM’s capac-
ity in providing accurate explanations among confusing
classes. We note that (1) DiffCAM successfully highlights
the glaucous-winged gull (col. 3), whereas GradCAM fails,
and (2) DiffCAM correctly identifies the front legs and neck
region as the key difference between the Eskimo Dog and
the Timber Wolf (col. 4).



G.2. How DiffCAM Results Are Affected by Model
and Reference Selection

We conducted the following experiments analyzing how
DiffCAM results can be affected by difference choices of
models and reference selections. Visualization results are
shown in Fig. 17.
Models from strong to weak performance. We evaluate
DiffCAM on three ImageNet pre-trained models, which are
MobileNetV3, ResNet50 and ConvNeXt, with the top-1 ac-
curacy of 68%, 76% and 84%, respectively. In line 1 of
Fig. 17, we find stronger models generally yield better ex-
planations on the multi-object image. The compared Grad-
CAM result is generated with the best model ConvNeXt.
DiffCAM is shown to outperform GradCAM with the same
ConvNeXt model.
Impact of biased sample selection. In line 2 of Fig. 17,
DiffCAM shows correct attention with different biased cat-
egories as references when answering the ”why not” ques-
tion. For example, when asking ”why not water buffalo”,
DiffCAM highlights the airedale terrier which is similar to
the result for ”why is”. However, when answering ”why not
Lakeland terrier”, DiffCAM captures the cow as their most
significant visual difference.
Impact of numbers of reference images. To capture reli-
able feature differences among classes, sufficient examples
are typically required as the reference group. Nevertheless,
DiffCAM is still flexible for a small number of or even one
single reference example. As shown in line 3 of Fig. 17,
given a car image, DiffCAM with only one nearest refer-
ence example captures the feature difference (the bridge)
between two individual images, whereas using more refer-
ences highlights the car body as common intra-class fea-
tures.



Figure 11. More examples of discriminative visual attention from the MNIST benchmark.



Figure 12. More examples of localization evaluation from the ImageNet benchmark.



Figure 13. Sanity check on the ResNet-50 model pre-trained on ImageNet.



Figure 14. More examples of abnormality localization on the RSNA dataset.



Figure 15. More examples of abnormality localization on the SIIM-ACR dataset.



Figure 16. Qualitative examples on CUB-200-2011 and ImageNet.

Figure 17. (1) DiffCAM on MobileNetV3, ResNet50 and ConvNeXt (Acc@1: 68%, 76%, 84%); (2) category-biased DiffCAM; (3)
DiffCAM with different numbers of kNN reference samples.


