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1. Distortion Classes for Degradation Modeling

Following [2], we employed 24 different types of quality

distortion augmentations for training our quality-aware sub-
module, with each distortion type applied at four intensity
levels. An example of an image synthesized using the block-
wise degradation model is shown in Figure 1. The specifics
of each distortion type are detailed below.
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Resize Bicubic: Shrinks the image and then enlarges it
back to its original dimensions using bicubic interpolation.

Resize Bilinear: Reduces the image size and restores it to
its original resolution using bilinear interpolation.

Resize Lanczos: Compresses the image and resizes it back
to its initial size using Lanczos filter interpolation.

Pixelate: Reduces the resolution and scales the image
back up using nearest-neighbor interpolation.

Motion Blur: Simulates the effect of motion blur by ap-
plying a linear filter.

Gaussian Blur: Smooths the image by convolving it with
a Gaussian kernel.

Lens Blur: Applies a circular blur filter to mimic the depth
of field effects.

Mean Shift: Alters the average intensity of the image by
adding constant and clipping values to the valid range.

Contrast: Adjusts the image contrast by applying a non-
linear sigmoid-like transformation to the RGB channels.

Unsharp Masking: Enhances the image’s edges by apply-
ing an unsharp mask technique.

Jitter: Distorts the image by randomly shifting pixel posi-
tions slightly.

Color Block: Overlays randomly sized and colored solid
blocks on the image.

Non-eccentricity: Introduces small random displacements
to patches of the image.

JPEG Compression: Simulates compression artifacts by
saving and reloading the image in JPEG format.

KonIQ LIVEC
PLCC SRCC PLCC SRCC

DEIQT 0.888 0.908 0.792 0.822
20%  LoDa 0907 0923 0.815 0.854
SHDIQA 0915 0.928 0.840 0.866

DEIQT 0903 0922 0.838 0.855
40%  LoDa 0922 0935 0.849 0.879
SHDIQA 0.929 0942 0.869 0.889

DEIQT 0914 0931 0.848 0.877
60% LoDa 0928 0.940 0.869 0.891
SHDIQA 0933 0945 0.891 0.910

Mode Methods

Table 1. Data-efficient learning validation with the training set
containing 20% , 40% and 60% of the images.

* White Noise (RGB space): Injects Gaussian white noise
into the image’s RGB channels.

* White Noise (YCbCr space): Adds Gaussian white noise
to the YCbCr color space channels.

» Impulse Noise: Introduces salt-and-pepper noise, creating
random black and white pixels.

» Multiplicative Noise: Applies speckle noise by multiply-
ing pixel values with random noise.

* Denoise: Adds Gaussian noise and applies a blur filter
(Gaussian or box) to smooth it out.

* Brighten: Increases overall brightness using a non-linear
transformation that preserves extreme values.

* Darken: Reduces brightness in a similar manner to
Brighten, but decreases pixel intensities.

e Color Diffuse: Blurs the color channels (a and b) in the
LAB color space with a Gaussian filter.

* Color Shift: Shifts the green channel and blends it with
the original image using a gradient-based mask.

» Saturate: Amplifies the color intensity in the LAB space
by scaling its color channels.



Evaluation Training | HOSA CORNIA MetalQA HyperNet DBCNN KG-IQA AL-IQA DEIQT | Proposed
Criteria Ratio [6] [8] [10] [5] [9] [3] [4] [11 |SHDIQA
KonlQ

5% 0.73 0.721 0.796 0.800 0.829 0.85 0.859 0.852 | 0.892
PLCC 10% | 0.751  0.743 0.821 0.842 0.843 0.876 0.888  0.885 0.907
25% | 0.777  0.765 0.861 0.883 0.868 0.901 0915 0910 | 0.930
5% 0.685  0.682 0.761 0.768 0.811 0.825 0.831 0.839 | 0.874
SRCC 10% | 0.708  0.701 0.788 0.814 0.828 0.851 0.857  0.865 0.890
25% | 0.737  0.720 0.830 0.859 0.852 0.877 0.891 0.890 | 0.917
SPAQ
5% 0.806  0.812 0.875 0.867 0.873 0.883 0.894 0.886 | 0.903
PLCC 10% | 0.827  0.827 0.887 0.885 0.885 0.895 0.903 0.900 | 0.916
25% | 0.848  0.843 0.898 0.901 0.898 0.911 0917 0912 | 0.924
5% 0.800  0.805 0.872 0.867 0.874 0.877 0.889  0.880 | 0.899
SRCC 10% | 0.821 0.82 0.885 0.885 0.885 0.891 0.897 0.896 | 0.912
25% | 0.842  0.836 0.895 0.899 0.900 0.907 0.910 0.908 0.920

Table 2. Performance on KonlQ and SPAQ. All methods are trained with 5%, 10%, or 25% of the images and tested on the other images. We

mark the best result in bold, second-best is underlined.
2. Data-Efficient Learning Validation

In this section, we further validate the effectiveness of our
method in efficiently learning from limited data across three
datasets. As shown in Table 2, our approach consistently
achieves superior PLCC and SRCC performance in data-
efficient experiments, outperforming state-of-the-art IQA
methods. Notably, our method achieves the best results on
two of the datasets. Among the other methods, AL-IQA,
which emphasizes selecting representative samples for effi-
cient learning, ranks second in performance. KG-IQA lever-
ages natural scene statistics and the human visual system’s
principles, while MetalQA benefits from strong pre-training
initialization. In contrast to these methods, our approach
does not depend on specific pre-training strategies or se-
lective data filtering, underscoring its robust generalization
across diverse BIQA tasks.

To facilitate a fair comparison with existing BIQA meth-
ods based on the ViT architecture, particularly in terms of
data efficiency, we conducted additional evaluations under
similar experimental conditions. Following the data-efficient
protocols in LoDa [7] and DEIQT [1], our model was trained
on 20%, 40%, and 60% subsets of the data, with each exper-
iment repeated 10 times to report average SRCC and PLCC
scores. By incorporating distortion priors through Block-
wise Degradation, our method achieved competitive perfor-
mance with state-of-the-art (SOTA) approaches, even when
trained on only 20% of the dataset. Notably, when utilizing
60% of the data, our method outperformed existing SOTA
BIQA methods trained on the full KonlQ dataset (Tab.1 in

LIVEC KonIQ
Method. PLCC SRCC | PLCC SRCC
Vertical 0922 0909 | 0948 0.937
Horizontal 0919  0.905 0.947 0.936
Grid 0919 0.903 | 0949 0.938

Table 3. Ablation study on partitioning strategies.

the manuscript). These results highlight the efficiency and
effectiveness of our approach in data-constrained scenarios.

3. Ablation about the Partitioning Strategy

Our initial choice of vertical partitioning was informed by
empirical observations of the dataset, particularly in authen-
tic image quality assessment (IQA) datasets, where horizon-
tal distortions may often more prevalent (e.g., blurred cars in
Figure 2 and people in Figure 5 of the main paper). To further
evaluate the impact of different partitioning strategies, we
conducted an ablation study incorporating both horizontal
partitioning and a 2x2 grid partitioning, and correspondingly
modified the mask matrix in Block-wise Aggregation. The
experimental results, summarized in Table 3, indicate that
the choice of partitioning strategy does not significantly im-
pact performance across different datasets. Specifically, both
horizontal and grid partitioning exhibited performance very
similar to that of vertical partitioning. This finding highlights
the robustness of our method.
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Figure 1. Examples of synthesized images generated by the Block-wise Degradation Model. Zoom in for better visual clarity.



Method Per Epoch Total Time
DEIQT 61s/338s 525s/3062s
LoDa 85s/586s 836s /5798s
Ours 82s /409s T47s / 3628s

Table 4. Training time on LIVEC / KonlQ dataset (Batch: 16/ 64).

Method Params MACs ] Throughput
TReS 152.5M 839G 294 (/s)
LoDa 118.1M 23.0G 276 (/s)
Ours 24.2M 435G 1113 (/s)

Table 5. Inference efficiency on LIVEC dataset (Batch: 16).

4. Computational Time

We compare the training time and inference efficiency
of our method with state-of-the-art (SOTA) approaches on
the LIVEC and KonlQ datasets. As shown in Table 4, the
additional training cost—relative to DEIQT—mainly comes
from the extra time required to load degraded images. More-
over, as illustrated in Table 5, our method achieves faster
inference speeds than previous hybrid vision transformer-
based BIQA methods, highlighting the efficiency advantage
of our approach. These results reflect the inherent trade-off
between performance and computational cost.

5. Limitations

Although we have demonstrated the superiority of
SHDIQA and found that incorporating synthetic distortions
into traditional no-reference image quality assessment is
highly beneficial, an important issue remains. Specifically,
for certain tasks like underwater and medical imaging, there
may be limitations due to the unique distortions (such as
shifts and artifacts) that differ significantly from the synthetic
distortions used in traditional BIQA. Therefore, exploring
how to adapt this framework to such specific applications is
a worthwhile direction for future research.

6. Broader Impacts

This paper aims to advance the field of Image Quality
Assessment (IQA) and examines its societal implications.
Improved IQA models can enhance user experiences on dig-
ital platforms by ensuring high-quality images, benefiting
sectors like online retail, social media, and digital advertis-
ing, where visual content quality influences user engagement
and satisfaction. However, IQA models may be vulnerable
to adversarial attacks, where image quality ratings are manip-
ulated to deceive users or systems. For example, low-quality
ads might be falsely rated as high-quality, misleading con-

sumers and diminishing advertising effectiveness. To address
these risks, a possible strategy is to implement monitoring
systems to detect and respond to anomalies, ensuring the
reliability and integrity of IQA models.
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