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Supplementary Material

1. Methodology Supplementary
1.1. Analysis of knowledge of retention and repro-

duction:
As mentioned in the main manuscript, for an input token
p ∈ Rm, consider an adapter without an activation func-
tion, with weights W = WdownWup ∈ Rm×n,Wdown ∈
Rm×r,Wup ∈ Rr×n, and a matrix rank of r. The weight
matrix can be decomposed using SVD as follows:

W = Udiag(σ)V, (1)

U⊤ =
[
ui

⊤]r
i=1

∈ Rr×m,V =
[
vi

⊤]r
i=1

∈ Rr×n. (2)

And the output o can be formulated as:

o = A(p) = W⊤p =
∑

ρ
′

ivi = V⊤g(p), (3)

g(p) = diag(σ)⊤U⊤p = [ρ
′

i]
r
i=1 ∈ Rr. (4)

After introducing non-linear activation function ReLU,
for each input p ∈ Rm, the output of the adapter can be
reformulated as:

A(p) = WT
upReLU(WT

downp), (5)

We perform SVD decomposition on Wup as the above
Eq. 2:

Wup = Uupdiag(σup)Vup, (6)

Wup =
∑

u(i,up)σ(i,up)v
⊤
(i,up). (7)

The output o can be reformulated as:

o = A(p) = WT
upReLU(WT

downp)

=
∑

(u(i,up)σ(i,up)v
⊤
(i,up))

⊤
ReLU(WT

downp)

=
∑

v(i,up)

(
σ(i,up)u

⊤
(i,up)ReLU(WT

downp)
)

=
∑

ρ
′

iv(i,up) = V⊤
upg(p), (8)

g(p) = diag(σ(i,up))
⊤
U⊤

(i,up)ReLU(WT
downp) ∈ Rr. (9)

From Eq. 9, we observe that after introducing the nonlinear
activation, we obtain an expression similar to Eq. 4, with
the function g replaced by a nonlinear function.

1.2. Training Pipeline
The training pipeline for the proposed DIA method fol-
lows previous approaches [6, 9, 10] and is composed of two
stages: new task learning and classifier alignment for each
task t, as illustrated in Algorithm.1.

Algorithm 1 Training Pipeline for Task t

Input: Training dataset Dt; TSAI module f(·; θb); Cosine
classifier ϕ(·;Wcls);
Parameter: θb = {θptm, θo, θn}, Wcls = {Wo

cls,W
n
cls};

Initialization: Initialize θn and Wn
cls. Freeze parameters

θptm and θo;
1: # New Task Learning.
2: while not converged do
3: for {Iti , yti} ∈ Dt do
4: Compute logits ξyt

i
= ϕ (f(Iti ; θb);W

n
cls);

5: Compute CE loss LCE(ξyt
i
; s,m);

6: Compute patch-level distillation loss Lpld;
7: Backward with objective Lobj = LCE + λLPDL;
8: end for
9: end while

10: For each class ctk ∈ Ct in task t, we compute its class
prototype µt

k and store it in memory;
11: # Classifier alignment.
12: while not converged do
13: for Training batch within Dt do
14: Sample N class prototypes {µci}Ni=1, ci ∈ C1:t;
15: Construct class feature µ̂i,c using PFR method

with the training batch;
16: Fine-tune the classifier ϕ(·;Wo

cls,W
n
cls);

17: end for
18: end while

Method Backbone ImageNet-R Cifar-100

A10 ↑ Ā10 ↑ A10 ↑ Ā10 ↑

RAPF CLIP 80.28 85.58 79.04 86.19
P-Fusion CLIP 79.10 - 85.50 -
DIA-r16 ViT-B16 79.82 86.04 90.38 94.36

Table 1. Comparison with CLIP-based CIL methods with their
reported accuracy. The best results are marked in bold, and the
second are marked in underline.

For incremental task t, the TSAI module is parameter-
ized by θb = {θptm, θo, θn}, where θptm denotes the pa-
rameters of the pre-trained model (PTM), θo refers to the
parameters of the adapters and signature vectors for old
tasks, and θn corresponds to the parameters for the new task
t. The cosine classifier ϕ(·;Wcls) comprises two parts: the
old class classifier ϕo(·;Wo

cls) and the new class classifier
ϕn(·;Wn

cls).

New Task Learning: During new task learning, for each



Method Params Flops ImageNet-R ImageNet-A CUB-200 Cifar-100

A10 ↑ Ā10 ↑ A10 ↑ Ā10 ↑ A10 ↑ Ā10 ↑ A10 ↑ Ā10 ↑

DIA-MLP 0.17M 17.91B 79.03 85.61 61.69 71.58 86.73 93.21 90.8 94.28
DIA-MHSA 0.51M 18.56B 78.50 85.05 57.27 69.12 83.29 90.56 90.33 94.17
DIA-MIX 0.69M 18.9B 79.69 85.41 58.21 69.93 85.68 92.38 90.85 94.30

Table 2. Ablation experiments on the adapter structure with 10 incremental tasks.

Method Params Flops ImageNet-R ImageNet-A CUB-200 Cifar-100

A10 ↑ Ā10 ↑ A10 ↑ Ā10 ↑ A10 ↑ Ā10 ↑ A10 ↑ Ā10 ↑

DIA-r08 0.17M 17.91B 79.03 85.61 61.69 71.58 86.73 93.21 90.8 94.28
DIA-r16 0.31M 18.18B 79.82 86.04 57.74 69.84 86.41 92.39 90.38 94.36
DIA-r64 1.19M 19.20B 79.10 85.62 59.91 70.90 87.19 92.26 90.56 94.51

Table 3. Ablation experiments on the adapter rank with 10 incremental tasks.

image {Iti , yti} ∈ Dt, where yti ∈ ctk ∈ Ct, we first extract
features f(Iti ; θb) using TSAI module f(·; θb), then com-
pute the output logits

ξyt
i
= ϕn

(
f(Iti ; θb);W

n
cls

)
, (10)

with the cosine classifier of new task ϕn(·;Wn
cls). We opti-

mize the classification results using a variant of the CE loss
LCE and ensure feature consistency with patch-level distil-
lation loss (PDL) Lpdl.

Following methods [4, 5], we define LCE as:

LCE(ξyt
i
; s,m) = −log

e
s(ξyt

i
−m)

e
s(ξyt

i
−m)

+
∑Ct−cti

c es(ξc)
. (11)

Here, s is a scaling factor that adjusts the magnitude of
cosine similarity, ensuring that the Softmax function pro-
duces a more discriminative probability distribution. m in-
troduces an additional angular separation between classes.
When s = 0 and m = 0, LCE(·; 0, 0) reduces to the stan-
dard cross-entropy loss function. When s ̸= 0 and m = 0,
LCE(·; s, 0) adopts a common format used in cosine classi-
fiers, adjusting the scale of cosine similarity via s.

The loss function during training is defined as:

Lobj = LCE + λLpdl, (12)

where λ is a hyperparameter that controls the strength of the
regularization.
Classifier Alignment: To further refine the classification
layer, we perform classifier alignment after the new task
learning stage, following methods [9, 10] (see Algorithm
1). Specifically, during the new task learning phase, only
the classifiers corresponding to the current task’s classes are

trained alongside the TSAI module. Once new task learn-
ing is completed, we compute the class prototype µt

k =
1
Nt

k

∑Nt
k

i f(Iti ; θb) for each class ctk ∈ Ct in the current
task, where N t

k denotes the number of images for class ctk.
During the classifier alignment stage for task t, we ran-

domly select N (Set to 32 in our implementation) class
prototypes {µci}Ni=1, ci ∈ C1:t in each training batch and
generate pseudo-features {µ̂ci}Ni=1 using the PFR method.
These pseudo-features, combined with training samples, are
used as inputs to the classifier ϕ(·;Wo

cls,W
n
cls), which is

then fine-tuned using LCE(·; 0, 0).

2. Supplementary Experiments
This section provides additional experiments, including
comparisons with CLIP-MoE [7], hyperparameter ablation
studies, and model structure ablation studies.

2.1. Comparative Experiments
We conduct comparative experiments with the latest meth-
ods that use a CLIP backbone: RAPF [3] and P-Fusion [1].
As shown in Table 1, despite the advantage of a more pow-
erful CLIP backbone and access to additional semantic in-
formation, RAPF [3] and P-Fusion [1] are outperformed by
our method on the CIFAR-100 dataset by a significant mar-
gin. Furthermore, our approach achieves comparable per-
formance to these methods on the Imagenet-R dataset.

2.2. Structure Ablation
We explore the impact of inserting the TSAI module in
parallel within both the MHSA and MLP structures of the
transformer block. Specifically, we integrate TSAI in par-
allel with the three QKV projection layers of MHSA. As



Ablation ImageNet-R Cifar100

A10 Ā10 A10 Ā10

DIA w SDC 75.13 83.63 89.13 93.46
DIA w LDC 76.43 84.08 88.66 93.66
DIA w PFR 79.03 85.61 90.80 94.29

Table 4. Ablation experiments on the feature shift techniques with
10 incremental tasks.

shown in Table 2, despite tripling the number of train-
able parameters per task, DIA-MHSA still slightly under-
performs compared to DIA-MLP. We attribute this to the
multi-head attention mechanism’s role in capturing input
sequence dependencies, where its complex structure may
be disrupted by the addition of adapters, thereby increas-
ing optimization difficulty. The experimental results further
validate the rationality of our current model structure.

2.3. Adapter Rank Ablation
We evaluate the model’s accuracy across four datasets by
varying the adapter down-projection dimensions to 8, 16,
and 64 in Table 3. The results show that increasing the
number of parameters does not lead to significant accuracy
improvements, with the r64 configuration yielding less than
a one-point gain over r08. This demonstrates that the im-
portance of model architecture and training strategies out-
weighs that of merely increasing the number of parameters.

2.4. Feature Drift Discussion
We further perform ablation studies to evaluate the impact
of feature shift techniques on model alignment, as summa-
rized in Table 4 The results demonstrate that compared to
SDC [8], which calculates class prototype shifts using fea-
ture gaps, or LDC [2], which uses MLP to learn mappings
from old to new feature spaces, our proposed PFR method
better captures the distribution of old class features in the
new task’s feature space, achieving superior accuracy on
both ImageNet-R and CIFAR-100 datasets.
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