EVPGS: Enhanced View Prior Guidance for Splatting-based
Extrapolated View Synthesis

Supplementary Material

In this supplementary document, we first provide a de-
tailed overview of our Merchandise3D dataset, including
its configuration and capture process, in Sec.A. Next, we
elaborate on further experimental details, including dataset
specifics and training implementation, in Sec.B. Subse-
quently, we present extended results for EVPGS, covering
more quantitative and qualitative comparison experiments
in Sec.C. Finally, we provide an example for the real-world
application of EVPGS in Sec.D.

A. Our Merchandise3D Dataset

To adequately represent both real-world applications and
the challenges posed by EVS, our Merchandise3D dataset
comprises real-world merchandise objects with diverse
structures and textures. The dataset has 7 objects instances,
each represented in the form of 100 camera views, where
each view is a triplet that contains an RGB image, an object
mask, and the corresponding camera parameters. As shown
in Figure D left, we select 50 views captured from nearly
horizontal angles as the training set and another 50 views,
elevated by approximately 40 degrees, as the testing set. We
instantiate each of these objects in Figure A. Each object is
captured originally in the format of a video and we release
these object videos as well. The resolution of videos in our
dataset is 1280 x 720. We describe our video capturing and
processing pipeline as follows.

When capturing video for each object, we place the ob-
ject on a motorized rotating turntable and keep recording
until the object is rotated for two rounds, which comprise
one round from a horizontal viewpoint followed by another
round from an elevated viewpoint looking downwards at ap-
proximately 40 degrees. We slowly lift the camera after the
first round and keep the camera fixed otherwise.

When processing each video, we sample 100 frames on
average and solve the camera parameters for these frames
using HLOC [8]. To boost the accuracy of HLOC, we in-
troduce additional textures to the scene by placing graffiti
sheets under the object when capturing the video. Each
graffiti we select has non-repeating local patterns across the
graffiti as to avoid confusing HLOC. When using multiple
graffiti sheets, we use a different graffiti on each sheet for
the same reason. Since we focus the view synthesis task
on objects, we also provide the object mask of each frame
obtained using the off-the-shelf Segment Anything Model
(SAM) [6], while we treat the graffiti as background.

Figure A. Our Merchandise3D dataset, which comprises real-
world merchandise objects with diverse structures and textures.
To boost the accuracy of HLOC [8], we place graffiti sheets under
each object during capturing as explained in Section A. We focus
on EVS for objects in this work, and the graffiti is not a part of
object to be reconstructed.

B. Experiments Details
B.1. Datasets

Details: For the two public datasets, DTU [4] and
Synthetic-NeRF [7], we utilize the ground truth masks pro-
vided by the datasets to segment objects from the back-
ground for the EVS task. For the DTU [4] dataset, we fol-
low [2, 11, 12] to evaluate the proposed method on 14 se-
lected scenes. The selected scan IDs are 24, 37, 40, 55, 63,
65, 83, 97, 105, 106, 110, 114, 118, and 122. Scan 69 was
excluded from our experiments as it lacks the ground truth
masks necessary for segmenting the object from the back-
ground. To improve experimental efficiency, the image res-
olution is resized to 777 x 851. For the Synthetic-NeRF [7]
dataset, all eight synthetic objects are included in our exper-
iments. The training images keep the original resolution of
800 x 800. For the Merchandise3D dataset, please refer to
Sec. A

Visualization: As shown in Table 2 of the main paper, each
dataset organized following the EVS scenario exhibits dras-
tic view coverage difference between the training and test-
ing splits. We visualize some examples from each dataset
in Figure D to showcase the difficulty of the EVS problem.



wlo occ.  EVPGS(RaDe-GS)  GT EVPGS(RaDe-GS)  GT

EVPGS(RaDe-GS)  GT

w/o occ. w/o occ.

Figure B. More ablation study results. Complementary to Figure 6 in the main paper, we present additional qualitative ablation study
results for the other two simplified version of EVPGS, i.e. only coarse and full w/o occ. Top row: In comparison to the simplified EVPGS
with only the coarse stage, the full EVPGS can better reconstruct fine details. Bottom row: In comparison to the simplified EVPGS

without the occlusion-aware reprojection strategy, the full EVPGS produces renderings clear of corruptions caused by occlusion.

B.2. Training

Coarse Stage: As mentioned in Sec. 4 in the main paper,
we use 3DGS [5], Mip-Splatting [10], 2DGS [2], GOF [11]
and RaDe-GS [12] as alternative backbones for our EVPGS
framework. When pre-training these GS-based models, we
adhere to the training configurations specified in their re-
spective original papers. For our appearance regulariza-
tion (Sec. 3.2 of the main paper), we utilize the Stable-
Diffusion-2.1 model directly, without any additional fine-
tuning on our dataset while using empty text prompts. For
our geometry regularization (Sec. 3.2 of the main paper), we
use the pyforch3d toolbox to rasterize the depth map from
reconstructed mesh. We set A\, = le —7and Ay = le — 1
in Eq. 8 of the main paper.

Fine stage: For our View Prior Refinement strategy (Sec-
tion 3.4 of the main paper), we select the parameters that
bring the best performance for EVPGS. We select wy, = 0.8
and w; = 0.5.

C. More Results

C.1. Computational Cost

We compute the training time of RaDe-GS [12], VEGS*[3],
and EVPGS(RaDe-GS) to assess the efficiency of our
framework. For all three methods, we train each for a total
of 30k iterations. Specifically, for EVPGS(RaDe-GS), we
follow the coarse-to-fine training process: 20k iterations for
pretraining, 1k iterations for the coarse stage, and 9k itera-
tions for the fine stage. Table A presents the training time of
each method across different datasets. To mitigate artifacts
and recover high-frequency details in extrapolated views,
EVPGS incorporates several strategies that increase training
time compared to the baseline RaDe-GS. While VEGS* is
also a GS-based method specifically designed for the EVS
problem, EVPGS is both more efficient and achieves supe-
rior performance. As shown in Table A and Table 1 of the

main paper, EVPGS effectively balances performance and
computational cost.

Training Time | DTU  Merchandise3D  Synthetic-NeRF
RaDe-GS [12] ~13.5m ~15m ~14.2m
VEGS* [3] ~52.5m ~43.3m ~35m
EVPGS(RaDe-GS) | ~25m ~26m ~22.5m

Table A. Computational Cost Comparison of RaDe-GS [12],
VEGS* [3] and EVPGS(RaDe-GS). We compare the training
time of these three methods. Compared to the RaDe-GS base-
line, our EVPGS achieves a good balance between performance
and computational cost. Additionally, EVPGS is more efficient
than VEGS* in handling the EVS problem.

C.2. Comparing with Sparse-view GS Methods

To assess the applicability of sparse-view GS methods in
EVS scenarios, we select the state-of-the-art sparse-view
GS method MVPGS [9] as a baseline and integrate it into
our EVPGS framework. We uniformly sample 9 training
views per scene from our EVS training split (Sec. 4.1 of
the main paper) to train MVPGS. As shown in Table B,
MVPGS performs poorly with the EVS task, while our
EVPGS framework still provides a slight performance im-
provement.

C.3. Results on real-life dataset

EVPGS is primarily designed for object-centric scenes. To
further evaluate its generalizability, we tested it on real-
world scenes from the Mip-NeRF360 [1] dataset. We cre-
ated training and testing splits following the EVS setting,
resulting in an average pitch angle difference of 17.01° be-
tween splits across scenes, compared to 4.10° in the original
Mip-NeRF360 splits. Notably, since the reconstructed mesh
after the pretraining stage is not available in Mip-NeRF360,
we used the EVPGS variant full w/omesh (Section 4.3 of
the main paper) for evaluation. As shown in Table C and



DTU Merchandise3D Synthetic-NeRF
PSNR{ SSIM1 LPIPS| | PSNRt+ SSIM{ LPIPS| | PSNRt SSIM1T LPIPS|
MVPGS [9] 21.032  0.7761  0.1705 11.067  0.7505  0.2693 13.929  0.7008  0.3613
RaDe-GS [12] 25.778  0.8882  0.0753 23.559 09134  0.0645 27.531 09190  0.0530
EVPGS(MVPGS) | 21.471 0.7877  0.1643 11.133  0.7519  0.2670 13.965 0.7017  0.3598
EVPGS(RaDe-GS) | 26.488  0.8991  0.0670 | 25.136  0.9267 0.0496 | 27.849 0.9243  0.0498

Table B. Quantitative evaluation of our EVPGS framework with MVPGS [9]. We evaluate EVPGS integrated with the state-of-the-art
sparse-view method MVPGS [9]. The results indicate that sparse-view methods struggle to handle the EVS scenario effectively. However,
our EVPGS framework still provides a slight improvement over MVPGS.

PSNR{ SSIM+ LPIPS |
19.066 0.2253
19.446 0.2091

Mip-NeRF360

RaDe-GS
EVPGS(RaDe-GS)*

0.5679
0.5757

Table C. Quantitative evaluation of our EVPGS framework on
the Mip-NeRF360 [1] dataset. We compare EVPGS(RaDe-GS)
variant full w/o mesh (denoted as EVPGS(RaDe-GS)*) with
the RaDe-GS baseline, demonstrating that our EVPGS framework
also achieves improved performance in outdoor scenes.

RaDe-GS EVPGS(RaDe-GS)*

Figure C. Qualitative Results on Mip-NeRF360 [1] dataset. The
result of EVPGS(RaDe-GS) variant full w/o mesh (denoted as
EVPGS(RaDe-GS)*) show fewer artifacts and preserve more de-
tails compared to the RaDe-GS baseline.

Figure C, EVPGS achieves a performance boost compara-
ble to that observed in object-centric scenes, demonstrating
its potential in scene-level reconstruction.

C.4. More Qualitative Results on Ablation Study

In the main paper, we presented the qualitative results of
our ablation study in Figure 6, showcasing two simplified
versions of EVPGS: only fine and full w/o ref.. In addition
to Figure 6, we conduct further qualitative experiments on
the DTU [4] and Synthetic-NeRF [7] datasets to evaluate
two other simplified versions of EVPGS: only coarse and
full w/o occ.. These experiments assess the effectiveness of
our fine stage and occlusion-aware module. We present the
results in Figure B, which demonstrate that the fine stage
(Section 3.3 of the main paper) enhances the reconstruction
of fine details, as evidenced by comparing the full EVPGS
with only coarse. Additionally, the occlusion-aware repro-
jection strategy (Section 3.3 of the main paper) effectively
mitigates image corruption caused by occlusions, as shown
by the comparison between the full EVPGS and full w/o
occ..

C.5. More Qualitative Results on EVPGS

In addition to the qualitative results in Figure 4 and Figure 5
of the main paper where we compared our overall EVPGS
with the other methods on the Merchandise3D, DTU [4],
and Synthetic-NeRF [7] datasets, we conduct further quali-
tative comparison on more object instances from these three
datasets. We present the additional comparison results in
Figure E and Figure F for Merchandise3D, Figure G and
Figure H for DTU [4], Figure I and Figure J for Synthetic-
NeRF [7].These results highlight the intricate structures and
fine details accurately reconstructed by our EVPGS frame-
work across all three datasets, showcasing the effectiveness
of EVPGS in addressing the EVS task.

D. Application

Our EVPGS framework enables a practical application for
free-view merchandise exhibition, allowing users to ef-
fortlessly showcase any object they desire. When creat-
ing attractive merchandise videos using the conventional
commercial technologies, it often requires a professional
photographer to capture the object from a diversity of
viewpoints along a set of planned camera paths, which
can make the filming process labor-intensive and costly.
With EVPGS, users only need to capture a simple circu-
lar sequence of images around the object using a smart-
phone. Then our EVPGS generates high-quality extrapo-
lated views, enabling the creation of engaging videos from
various perspectives with minimal effort. EVPGS not only
reduces the burden of photography but also ensures dis-
play of the object with good realism and high-quality de-
tails, providing an efficient and effective solution for mer-
chandise display. We provide several merchandise display
videos with artistically designed camera paths in our project
page. We encourage the readers to watch the videos in
our project page to gain a better grasp of the capabilities
of our EVPGS in real-world applications.


https://charley077.github.io/EVPGS_Homepage/
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Figure D. Visualization of the substantial view coverage disparity between the training and testing splits in our EVS scenario. The
quantitative average angle differences are provided in Table 2 of the main paper.
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Figure E. More qualitative comparison on our Merchandise3D dataset.
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Figure F. More qualitative comparison on our Merchandise3D dataset.
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Figure G. More qualitative comparison on the DTU [4] dataset.
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Figure H. More qualitative comparison on the DTU [4] dataset.
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Figure I. More qualitative comparison on the Synthetic-NeRF [7] dataset.
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Figure J. More qualitative comparison on the Synthetic-NeRF [7] dataset.
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