
Supplemetary of Enhancing Virtual Try-On with Synthetic Pairs and
Error-Aware Noise Scheduling

Parameter Value

Batch Ratio of Synthetic Data 15%
Batch Size 32
Image Size 512x512

#Model Parameters 102.6M
Learning Rate 10−4

#Training Iterations 200K
#Finetuning Iterations 100K

Table 6. Implementation details of EARSB+H2G-UH/FH.

A. Implementations Details
For generating the initial image x1 in our EARSB train-
ing, we employ three try-on GAN models: HR-VTON [5]
and SD-VTON [8] and GP-VTON [9]. All human images
are processed to maintain their aspect ratio, with the longer
side resized to 512 pixels and the shorter side padded with
white pixels to reach 512. During training, images undergo
random shifting and flipping with a 0.2 probability. The
weakly-supervised classifier is trained for 100K iterations
with a batch size of 8, while the human-to-garment GAN is
trained for 90K iterations with a batch size of 16. As shown
in Tab. 6, EARSB+H2G-UH/FH is trained for 300K itera-
tions with a batch size of 32, incorporating 15% synthetic
pairs in each batch. The first 200K iterations are trained on
t ∈ [0, 1] while the following 100k iterations are finetuned
on t ∈ [0, 0.5) and t ∈ [0.5, 1] respectively following [1].
All models utilize the AdamW optimizer with a learning
rate of 10−4.

For inference, we select the GAN model that demon-
strates better performance on each dataset to generate the
initial image. Specifically, we employ GP-VTON [9] for
VITON-HD and SD-VTON [8] for DressCode-Upper. Dur-
ing the sampling process, the guidance score in Eq. (10) is
scaled by a factor of 6 and clamped to the range [−0.3, 0.3].

B. UNet Architecture
EARSB UNet. The UNet architecture in EARSB consists
of residual blocks and garment warping modules. It pro-
cesses the concatenation of the error map M , pose represen-

Figure 8. Architecture of our UNet in EARSB.

Figure 9. Architecture of our UNet in the human-to-garment
model.

tation P , and noisy image xt to predict the noise distribu-
tion ϵrθ at time t. The UNet encoder has 21 residual blocks,
with the number of channels doubling every three blocks
to a maximum of 256. Similarly, the garment encoder has
21 residual blocks but reaches a maximum of 128 channels.
The decoder mirrors the encoder’s structure, with extra gar-
ment warping modules. As shown in Fig. 8, each of the
first 15 residual blocks in the UNet decoder is followed by
a convolutional warping module. These modules concate-
nate encoded garment features and UNet-decoded features
to predict a flow-like map for spatially warping the encoded
garment features. The warped features are then injected into
the subsequent decoder layer via input concatenation. Fol-
lowing [7], all residual blocks and flow-learning modules
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Figure 10. Results on different time steps. Our error map focuses on low-quality regions and maintains the quality of the sufficiently good
regions.

incorporate timestep embeddings to renormalize latent fea-
tures.
Human-to-Garment UNet. Our human-to-garment UNet
architecture is adapted from the model proposed in [3]. As
illustrated in Fig. 9, it shares similarities with the UNet in
EARSB, but with two key distinctions: a) It is not timestep-
dependent and takes cropped clothing as input to generate
its product-view image. b) The garment warping module
utilizes the ith clothing features from both the encoder and
decoder to learn a flow-like map, rather than using encoded
features from the human.

C. Visualizing Error Maps

Our EARSB focuses on fixing specific errors and therefore
can save the sampling cost when initial predictions are suffi-
ciently good. For example, in the first row of Fig. 10, the er-
ror map highlights the graphics and text in the initial image.
This low-quality part is being refined progressively as the
number of sampling steps increases from 5 to 100. At the
same time, other parts that our weakly-supervised classifier
believes to be sufficiently good, which are mostly the solid-
color areas, are kept well regardless of the number of sam-



Figure 11. Failure cases on VITON-HD where the initial image has a poor-quality.

pling steps. Therefore, for an initial image whose error map
has almost zero values, we can choose to use fewer steps in
sampling. On the contrary, for an initial image whose error
map has high confidence, we should assign more sampling
steps to it to improve the image quality.

D. Ablations on the Quality of the Initial Image

In Tab. 7 we include the FID results of using different try-
on GAN models to generate the initial image under the un-
paired setting. Baseline means the GAN baseline. We can
draw three conclusions from the results: a) our EARSB can
refine the GAN-generated image over the GAN baseline; b)

HR-VTON [5] SD-VTON [8] GP-VTON [9]

Baseline 10.75 9.05 8.61
CAT-DM [10] 10.03 8.76 8.55
EARSB 9.11 8.69 8.42

Table 7. FID scores of using different try-on GAN models to gen-
erate the initial image under the unpaired setting.

the quality of the initial image x1 is positively correlated
with the quality of the sampled x̂0; c) our model achieves
higher gains over CAT-DM, which also tries to refine the



Figure 12. Visualization of the generated images in WVTON.

FID↓ KID↓
Stable-VTON [4] 131.76 2.10

EARSB(SD) 127.15 1.67
EARSB(SD) +H2G-UH 120.29 1.18

Table 8. Results on out-of-domain test set WVTON under the un-
paired setting. All image background is removed for evaluation.

GAN-generated image but without error-aware noise sched-
ule.

E. Results on In-the-Wild Dataset

We ran our data-augmented EARSB on the Out-of-Domain
test set WVTON [6] under the unpaired setting and removed
the image background for evaluation. In Tab. 8, we observe
a 7 point gain in FID, showing its good generalization abil-
ity. Fig. 12 also shows that EARSB(SD)+H2G-UH better
recovers the clothing patterns.

F. Limitations

While our human-to-garment model can effectively gener-
ate synthetic paired data for try-on training augmentation,
it has some imperfections. The overall quality of synthetic
garments is regulated by our filtering criteria (Sec. 3.2),
yet minor texture deformations occasionally occur. For in-
stance, in Fig. 13, the second pair of the first row shows a
misaligned shirt placket in the synthetic garment. This lim-
itation stems partly from the fact that our model is trained
in the image domain which lacks 3D information. A po-
tential solution is to utilize DensePose representations ex-
tracted from the garment as in [2].

A key constraint of our EARSB is its refinement-based
nature, which makes the generated image dependent on the
initial image. We assume that the initial image from a try-
on GAN model is of reasonable quality, requiring only par-
tial refinement. Consequently, if the initial image is of
very poor quality, our refinement process cannot completely
erase and regenerate an entirely new, unrelated image. Fig.
11 illustrates this limitation: in the first row, the initial im-
age severely mismatches the white shirt with pink graph-
ics. With EARSB refinement, while the shirt is correctly re-
warped, color residuals from the initial image persist around
the shoulder area.

FID KID SSIM LPIPS

VITON-HD 14.81 0.42 0.849 0.229
DressCode-Upper 18.92 0.59 0.832 0.257

Table 9. Human-to-Garment results under 1024x1024 image res-
olution.

G. Additional Visualizations
Figures 13 and 14 showcase exemplars from our synthe-
sized datasets H2G-UH and H2G-FH, respectively. We
also report quantitative results in Table 9 to evaluate our
human-to-garment model on VITON-HD and DressCode-
Upper. The generated garment images in Figures 13 and 14
closely mimic the product view of the clothing items, accu-
rately capturing both the shape and texture of the original
garments worn by the individuals. This approach to creat-
ing synthetic training data for the virtual try-on task is both
cost-effective and data-efficient, highlighting the benefits of
our proposed human-to-garment model.

Figures 15 and 16 give visualized results of the proposed
EARSB and EARSB+H2G-UH. In contrast to previous ap-
proaches, EARSB specifically targets and enhances low-
quality regions in GAN-generated images, which typically
correspond to texture-rich areas. This targeted improvement
is evident in the last row of Fig. 15, where EARSB more
accurately reconstructs text freinds, and in the third row,
where it successfully generates four side buttons. Further-
more, the incorporation of our synthetic dataset H2G-UH
with EARSB leads to even more refined details in the gen-
erated images, demonstrating the synergistic effect of our
combined approach.

H. Ethics
We acknowledge several potential ethical considerations of
our work on virtual try-on:
• Bias and representation: We strive for diversity in our

training data to ensure the model performs equitably
across different body types, skin tones, and ethnicities.
However, biases may still exist, and further work is
needed to assess and mitigate these.

• Misuse potential: While intended for benign purposes,
this technology could potentially be misused to create
misleading or non-consensual images. We strongly con-
demn such uses and will explore safeguards against mis-
use in future work.

We believe the potential benefits of this technology out-
weigh the risks, but we remain vigilant about these ethical
considerations and are committed to addressing them as our
research progresses.



Figure 13. Visualized examples of the (human, synthetic garment) pairs on our proposed H2G-UH.



Figure 14. Visualized examples of the (human, synthetic garment) pairs on our proposed H2G-FH.



Figure 15. Visualized examples on VITON-HD. Our EARSB and EARSB+H2G-UH better recovers the intricate textures in the garment.



Figure 16. Visualized examples on DressCode-Upper. Our EARSB and EARSB+H2G-UH better reconstructs the texts and graphics in the
garment.
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