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Appendix

The Appendix is organized as follows:

• Section A1 presents additional details about SPARCL.

• Section A2 provides further details on the experimental

setup.

• Section A3 includes additional experimental results.

A1. Details of SPARCL

The prompts used as input to the LLM for generating nega-

tive and positive captions are presented in Figure A1.

You are an assistant assigned to help a human user edit

a given sentence that describes an image. Make a minor

change to the sentence by randomly altering, omitting, in-

serting, or replacing one word or phrase. Although the

change should be minor, it must result in a significant dif-

ference in the sentence’s meaning, making it unable to de-

scribe the original image. Use the provided template and

respond with a single, valid sentence.

User: {}
Assistant: Sure! Here’s my edit:

(a) Prompts used to generate negative captions.

You are an assistant assigned to help a user edit a sentence

that describes an image. Make a minor change to the sen-

tence by randomly altering, omitting, inserting, or replac-

ing one word or phrase. The new sentence must strictly

retain the same meaning as the original sentence. Use the

provided template and respond with a single, valid sen-

tence.

User: {}
Assistant: Sure! Here’s my edit:

(b) Prompts used to generate positive captions.

Figure A1. Prompts used to generate negative and positive cap-

tions.

A2. Experimental Setup

Data Synthesis. For caption generation, we utilize the

Llama-2-Chat 13B model1, with the temperature set to 0.9,

top-k set to 100, and top-p set to 0.9 for sampling. For im-

age generation, we use the LCM model2 for its swift infer-

ence with few steps [61]. The pretrained CLIP ViT-L/14

1https://huggingface.co/meta-llama/Llama-2-13b-chat
2https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7

[74] is used as the image feature extractor for injecting im-

age features. We perform 8 inference steps with LCM to

generate each image.

Hyperparameter Selection. First, we use only real train-

ing samples to select τ and b. The optimal values are deter-

mined by searching for the ones that minimize the training

loss at the first training step, aiming to preserve the output

distribution from the pretrained model. After searching, we

set τ = 0.01 and b = −30.0. Next, we select the base

learning rate, weight decay, and LoRA adapter rank based

on performance on the COCO-2014 validation set, in which

the model is trained exclusively on real samples. According

to the performance on the validation set, these hyperparam-

eter are set to a base learning rate of 0.01, weight decay of

0.5, and LoRA adapter rank of 16. Then, we construct a

validation set composed of the CIFAR-10 [47] test set and

a randomly selected 5% of samples from ARO-Attribute

and ARO-Relation, to balance the performance on coarse-

grained and fine-grained tasks. Using this validation set,

we train the model on both real and synthetic samples and

use the validation performance to determine the remaining

hyperparameters: m0, α, β, γ and λ. The effects of these

hyperparameters are shown in Table A5.

A3. Experimental Results

Performance on each subset of the four benchmarks. Ta-

ble A1, A2 and A3 present the performance of different

methods on each subset of the four benchmarks.

Comparison with other images generation methods. We

compare our image generation method with StyleAligned

[27]. For a fair comparison, we use an ablated version

#7 of SPARCL (Sec. 4.4, main paper) without the adap-

tive margin loss. Both methods use synthetic captions that

we generate. As shown in Table A4, StyleAligned per-

forms about 1% worse than our method on the four compo-

sitional benchmarks, which illustrates the effectiveness of

image feature injection in SPARCL. In Figure A2, we show

two synthetic images from StyleAligned, where it fails to

align the generated content with the synthetic captions. We

hypothesize that the diffusion trajectory of the real image

imposes strong constraints on the image generation model,

making StyleAligned difficult to edit the image to match

the synthetic caption. This issue is similar to the zero-shot

image editing methods [6, 22, 63], which provide incor-

rect guidance during model training and lead to limited im-

provements on compositional understanding tasks. More-

https://huggingface.co/meta-llama/Llama-2-13b-chat
https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7


Table A1. Comparison of accuracy (%) between SPARCL and baselines on ARO and VL-CheckList. “img” represents images, “cap”

represents captions, “syn” represents synthetic data.

Method

Training Data

ARO VL-CheckList

Source
# real

img

# real

cap

# syn

img

# syn

cap
Relation Attribute Average Attribute Relation Object Average

CLIP-ZeroShot[74] - - - - - 59.22 62.86 61.03 67.05 66.71 85.72 73.16

CLIP-Finetune[74] COCO 82K 410K 0 0 63.02 65.16 64.09 66.74 64.43 86.86 72.78

SDS-CLIP [3] COCO 82K 410K 0 0 53.0 62.0 57.5 - - - -

[79] COCO 0 0 82K 82K - - - 70.7 53.8 85.1 69.87

AMR-NegCLIP [83] COCO 100K 100K 0 500K 83.2 75.6 79.4 - - - -

NegCLIP [106] COCO 100K 100K 0 500K 81.0 71.0 76.0 70.9 68.9 84.1 74.6

MosaiCLIP [85] COCO 109K 109K 0 981K 82.6 78.0 80.3 70.1 71.3 89.0 76.8

FSC-CLIP [68] COCO 100K 100K 0 1.5M - - - - - - 77.20

CE-CLIP [109] COCO 82K 410K 0 2M 83.00 76.40 79.70 72.62 71.75 84.65 76.34

COMO [49] COCO 113K 567K 567K 567K - - - 73.44 71.16 86.20 76.93

SPARCL COCO 82K 410K 820K 820K 80.10 74.19 77.15 73.72 72.99 90.76 79.16

SPEC [70] LAION 20K 20K 20K 20K 73.7 66.4 70.1 - - - -

[18] CC3M 3M 3M 0 9M - - - 71.97 68.95 85.00 75.31

CE-CLIP+ [109] COCO+CC3M 3M 3M 0 15M 83.6 77.1 80.35 76.76 74.70 86.30 79.25

CLOVE [11] LAION-COCO >1B >1B 0 >1B 69.0 77.4 73.2 - - - -

syn-CLIP [9] SyViC 0 0 >1M >1M 71.40 66.94 69.17 70.37 69.39 84.75 74.84

FiGCLIP [45] VidSitu 20K videos 0 0 68.01 65.99 67.00 - - - -

Table A2. Comparison of accuracy (%) between SPARCL and baselines on SugarCrepe. “img” represents images, “cap” represents

captions, “syn” represents synthetic data.

Method

Training Data

Add Replace Swap
Average

Source
# real

img

# real

cap

# syn

img

# syn

cap
Attribute Object Attribute Object Relation Attribute Object

CLIP-ZeroShot[74] - - - - - 69.22 77.40 80.33 90.98 69.49 64.71 61.63 73.39

CLIP [74] (Finetune) COCO 82K 410K 0 0 78.03 88.12 85.79 93.58 73.83 71.77 68.29 79.92

AMR-NegCLIP [83] COCO 100K 100K 0 500K - - - - - - - 79.92

NegCLIP [106] COCO 100K 100K 0 500K 82.80 88.80 85.91 92.68 76.46 75.38 75.20 82.46

FSC-CLIP [68] COCO 100K 100K 0 1.5M - - - - - - - 85.10

CE-CLIP [109] COCO 82K 410K 0 2M 93.4 92.4 88.8 93.1 79.0 77.0 72.8 85.2

SPARCL COCO 82K 410K 820K 820K 93.49 92.43 88.95 95.82 78.94 81.38 78.77 87.11

CounterCurate [108] Flickr 30K 30K 150K 150K 86.71 90.35 87.94 95.94 76.24 73.57 68.57 82.76

CE-CLIP+ [109] COCO+CC3M 3M 3M 0 15M 94.9 93.8 90.8 93.8 83.2 79.3 76.8 87.5

CLOVE [11] LAION-COCO >1B >1B 0 >1B - - - - - - - 79.92

IL-CLIP [114] CC12M 12M 12M 0 0 - - - - - - - 70.34

SF-CLIP [80] YFCC15M 15M 15M 0 0 - - - - - - - 71.20

FiGCLIP [45] VidSitu 20K videos 0 0 72.5 77.4 81.1 91.8 69.4 66.1 63.8 74.6

over, StyleAligned requires DDIM inversion to obtain the

inverted diffusion trajectory from the real image, making it

computationally expensive and impractical for large-scale

image generation.

Effects of image feature injection. In Figure A3 and A4,

we present examples of synthetic images to illustrate how

image feature injection helps mitigate unintended changes.

In Figure A3, we observe that feature injection helps to gen-

erate images with similar object size and viewing angle to

the real image. For example, in (a), the real image depicts

a wide shot of a girl, while the synthetic image without

feature injection produces a close-up shot despite aligning

with the caption. With feature injection, the synthetic im-

age maintains a wide shot, resembling the real image. Sim-

ilar effects are seen in (b) and (c). In (d), the synthetic im-

age with feature injection preserves the viewing angle of the

real image, whereas the one without feature injection devi-



Table A3. Comparison of accuracy (%) between SPARCL and baselines on SugarCrepe++. “img” represents images, “cap” represents

captions, “syn” represents synthetic data.

Method

Training Data

Replace Swap
Average

Source
# real

img

# real

cap

# syn

img

# syn

cap
Attribute Object Relation Attribute Object

CLIP-ZeroShot[74] - - - - - 65.61 86.80 56.26 45.21 45.18 59.81

CLIP-Finetune[74] COCO 82K 410K 0 0 69.03 90.61 56.33 49.24 46.21 62.27

NegCLIP[106] COCO 100K 100K 0 500K 69.41 89.53 52.27 57.99 55.25 64.89

SPARCL COCO 82K 410K 820K 820K 68.90 89.76 52.34 57.95 61.63 66.12

[18] CC3M 3M 3M 0 9M 56.98 80.93 47.30 48.4 42.98 55.32

Table A4. Performance comparison (%) between SPARCL and

StyleAligned.

Variant ARO VL-CheckList SugarCrepe SugarCrepe++ Average

StyleAligned [27] 72.60 75.03 85.70 65.25 74.65

SPARCL (#7) 74.12 76.35 85.40 66.44 75.58

Real image Synthetic image

(a) Real caption: A pizza sitting on top of a pan next to a 
paper cut out.

      Synthetic caption: A paper cut out sitting on top of a
      pan next to a pizza.

(b) Real caption: A person on skis skiing down a
      mountain slope.
      Synthetic caption: A person on rollerblades rolling
      down a grassy hill.

Real image Synthetic image

Figure A2. Examples of synthetic samples from StyleAligned.

The algorithm did not alter the image content according to the cap-

tion.

ates from it. In Figure A4, we observe that feature injection

helps generate backgrounds that resemble the real image.

For example, in (a), the real image and the synthetic image

without feature injection depicts an outdoor street scene,

creating a noticeable difference. With feature injection, the

single-colored background makes the synthetic image more

similar to the real one. In (b), the sky occupies much of

background in the real image as well as the image gener-

ated with feature injection, whereas the one without feature

injection shows little sky. Also, the basketball is present in

both the real and the synthetic image with feature injection

but not in the middle image. Similar effects are observed

in (c) and (d). These examples show that image feature in-

jection reduces unintended variations not captured by the

caption, enhancing the usefulness of synthetic samples for

training VLMs.

Effects of hyperparameters. Table A5 presents the perfor-

mance of SPARCL with different hyperparameter settings.

For λ, we observe that λ = 0.01 achieves the highest av-

Table A5. Performance of SPARCL with different hyperparam-

eters. “ARO-Rel” refers to the ARO-Relation validation subset,

and “ARO-Att” refers to the ARO-Attribute validation subset, both

consisting of a randomly selected 5% of the full set, as described

in Sec. A2.

λ α m0 β γ
Validation Test

Average
CIFAR-10 ARO-Rel ARO-Att Average

0.0 0.0 - - - 86.56 78.79 76.52 80.62 75.58

0.001 0.0 0.01 0.0 0.0 85.02 78.21 72.72 78.65 75.95

0.01 0.0 0.01 0.0 0.0 83.66 81.77 76.46 80.63 76.78

0.1 0.0 0.01 0.0 0.0 85.02 81.29 78.94 80.47 76.94

0.01 1.0 0.01 0.0 0.0 83.18 81.10 76.52 80.27 77.21

0.01 10.0 0.01 0.0 0.0 86.46 81.89 75.05 81.13 77.27

0.01 100.0 0.01 0.0 0.0 87.64 74.93 75.19 79.25 75.28

0.01 10.0 0.005 0.0 0.0 85.91 79.87 78.76 81.51 77.08

0.01 10.0 0.01 0.0 0.0 86.46 81.89 75.05 81.13 77.27

0.01 10.0 0.02 0.0 0.0 84.85 79.41 75.28 79.85 76.79

0.01 10.0 0.005 -0.02 1.0 86.46 80.08 78.90 81.81 77.38

0.01 10.0 0.005 -0.03 1.0 86.75 81.08 76.43 81.42 77.25

0.01 10.0 0.005 -0.02 3.0 87.31 80.79 76.52 81.54 77.23

erage validation accuracy, leading us to select it for subse-

quent experiments. Similarly, for α, the best performance

is obtained with α = 10.0, which is used in other exper-

iments. When evaluating different values of m0, we find

that m0 = 0.005 yields the best results. Finally, we ex-

amine various combinations of β and γ and observe that

β = −0.02 and γ = 1.0 provide the best validation per-

formance. Thus, this combination is selected as the optimal

hyperparameter setting.



Real image

Synthetic image 

w/o image 

feature injection

Synthetic image 

with image 

feature injection

(a) Real caption: A girl in a pink snowsuit skiing on a ski 
slope.

      Synthetic caption: A pink girl skiing on a slope.

(c) Real caption: A man in suit and tie holding a cell 
     phone posing for a picture.
      Synthetic caption: A suit-clad man posing with a tie-
      adorned cell phone for a picture.

Real image

Synthetic image 

w/o image 

feature injection

Synthetic image 

with image 

feature injection

(b) Real caption: A zebra standing next to a stone wall.
      Synthetic caption: A zebra standing next to a wavy
     stone wall.

(d) Real caption: Woman with bright smock sitting on a
      wooden bench.
      Synthetic caption: Woman with vibrant smock
      sitting on a weathered bench.

Figure A3. Examples of synthetic samples without and with image feature injection. In these examples, the image feature injection

technique achieves alignment of the subject size and the viewing angle with those in real images.

Real image

Synthetic image 

w/o image 

feature injection

Synthetic image 

with image 

feature injection

(a) Real caption: A little kid that is holding a phone.
      Synthetic caption: A little kid who is holding a selfie
      stick.

(c) Real caption: A red fire hydrant next to wall made of 
     stone.
     Synthetic caption: A fiery red fire hydrant stands 
     next to a sturdy stone wall.

Real image

Synthetic image 

w/o image 

feature injection

Synthetic image 

with image 

feature injection

(b) Real caption: A group of guys playing basketball on 
      a city street.
      Synthetic caption: A group of hoopsters dribbling 
      down a concrete floor.

(d) Real caption: A group of giraffes standing next to a 
      building.
      Synthetic caption: A group of giraffes standing next 
      to a skyscraper.

Figure A4. Examples of synthetic samples without and with image feature injection. In these examples, the image feature injection

primarily helps to generate backgrounds that resemble those in real images. For example, in (d), both the first and the third images show

the ground, whereas the second image does not.
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