FreeGave: 3D Physics Learning from Dynamic Videos by Gaussian Velocity

Supplementary Material

A. Proof of Divergence-free Property

The velocity field is defined as:

6
v(p,t) = Vi B(p,) =Y ViB*(p,).  (10)

In order to prove the divergence-free property, we just
need to show V,, - v(p,,t) = 0. Since V is totally irrele-
vant to p,, we only need to show each basis vector function
follows Vp, - B*(p,) =0, i.e.:

Vp, - v(py,t) = Vp, - (Vi - B(p,)) (11)

[
NE

ViV, - B¥(p,) = 0. (12)

>
Il
—

Next, we show each of the basis vector function is
divergence-free:
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B. Implementation Details

We implement our networks by MLPs, and the detailed con-

figurations are as follows:

* feode: This network includes 4 MLP layers and each hid-
den layer has a size of 128 neurons followed by ReLU.
In addition, we make a degree of 8 positional encoding
for input positions. We set the dimension of the output
physics code L as 16.

* fneck: This network has MLP layers as L — 4L —
4L — K. We choose the bottleneck vector dimension
K as 32 for Dynamic Indoor Scene dataset and 16 for
other two datasets.

* fweight: This network includes 5 MLP layers and each
hidden layer has a size of 128 neurons. In addition, we
make a degree of 8 positional encoding for input posi-
tions, and we add a ResNet connection on the 3rd layer.
The output vector has a dimension of K * 6 and is re-
shaped as a matrix of K x 6.

* fdeform: For two synthetic datasets, this network in-
cludes 6 MLP layers and each hidden layer has a size of
128 neurons, while it includes 8 MLP layers and each
hidden layer has a size of 256 neurons for the challenging
FreeGave-GoPro dataset. In addition, we also make a de-
gree of 8 positional encoding for input positions, and the
physics code z is concatenated to the encoded position.
We also add a ResNet connection on the third layer.

C. Details of Deformation-aided Optimization

We train our models on all datasets on a single NVIDIA
3090 GPU. We normalize the total time span in all datasets
to be 1. At is set to be 1/60 in both Dynamic Object dataset
and Dynamic Indoor Scene dataset, while it is set as 1/88 in
the challenging FreeGave-GoPro dataset.

D. Details of All Datasets

Dynamic Object Dataset [30]: This dataset contains
6 moving objects with a white background, and the corre-
sponding motions include: 1. part-wise rigid motions with
accelerations, i.e., rotating fan, freely falling basketball in a
gravitational field, and rotating telescope; 2. self-propelling
deformable objects, i.e., a bat flapping wings, a swimming
whale, and a swimming shark. Each scene contains 15
viewing angles, where the first 46 frames from 12 selected
viewing angles are used as training split, i.e., 552 frames in
total, and the first 46 frames from the other 3 viewing an-
gles are used for evaluating novel view interpolation within
the training time period, i.e., 138 frames in total. All the
remaining 14 frames from 15 viewing angles are used to
evaluate future frame extrapolation, i.e., 210 frames.

Dynamic Indoor Scene Dataset [30]: This dataset con-
tains 4 indoor scenes, each containing 3 to 5 moving ob-
jects, and each moving object is undergoing different rigid
motions. Each scene contains 30 viewing angles, where the
first 46 frames from 25 selected viewing angles are used as
the training split, i.e., 1150 frames in total, and the first 46
frames from the other 5 viewing angles are used for evaluat-
ing novel view interpolation within the training time period,
i.e., 230 frames in total. All the remaining 14 frames from
30 viewing angles are used to evaluate future frame extrap-
olation, i.e., 450 frames.



ParticleNeRF Dataset [ 1]: This dataset includes 6 chal-
lenging dynamic objects.

* Object #1: Robot. This scene includes a robot arm wav-
ing from one side to another side.

¢ Object #2: Robot Task. This scene shows a robot arm
putting a box onto a sliding platform.

¢ Object #3: Wheel. This scene includes a constant rotat-
ing wheel.

* Object #4: Spring. This scene shows a box tied on a
spring, which undergoes a harmonic oscillation motion.
The training and the test observation period in total form
a whole oscillation period.

* Object #5: Pendulums. This scene includes two swing
pendulums, each undergoing harmonic oscillation mo-
tion. The training and the test observation period in total
form a whole oscillation period.

* Object #6: Cloth. This scene includes a flat cloth being
folded.

Each scene contains 40 viewing angles. For Object #1 &
#2, we choose the first 53 frames from 36 selected viewing
angles as the training split, i.e. 1908 frames in total, and the
first 53 frames from the other 4 viewing angles for evaluat-
ing novel view interpolation within the training time period,
i.e., 212 frames in total. All the remaining 17 frames from
40 viewing angles are used to evaluate future frame extrap-
olation, i.e., 680 frames. For Object #3 & #4 & #5 & #6,
the first 104 frames from 36 selected viewing angles are
used as the training split, i.e., 3744 frames in total, and the
first 104 frames from the other 4 viewing angles are used
for evaluating novel view interpolation within the training
time period, i.e., 416 frames in total. All the remaining 36
frames from 40 viewing angles are used to evaluate future
frame extrapolation, i.e., 1440 frames.

FreeGave-GoPro Dataset: This dataset includes 6 chal-
lenging real-world dynamic scenes.

* Scenes #1/#2: Pen & Tape. There is a person holding a
pen and trying to pass it through the hole of a static tape.
The difference between these two scenes is that there are
more static objects in the second scene, introducing more
visual occlusions and requiring more accurate separation
between moving areas and static areas. The difficulty lies
in the motion of one object which is going to penetrate
through another in future.

¢ Scene #3: Box. This scene contains a drawer-like box,
and a person is trying to close it. The difficulty lies in a
tight combination of the moving part and the static part of
the box, especially in future.

¢ Scene #4: Hammer. This scene contains a hammer mov-
ing on the topside of a box. The difficulty lies in the di-
rect contact of moving objects and static objects, which
requires sharp separation of diverse motion patterns in or-
der to keep right static/moving states in future.

* Scene #5: Collision. This scene contains a cube and a

cup moving towards each other. The difficulty is the dif-
ferent directions of two motions. It is hard to keep the
shapes of these two objects in future.

* Scene #6: Wrist Rest. A person is trying to bend a wrist
rest. The difficulty is that the object is deformable and the
motion is thus not rigid or part-wise rigid.

E. Quantitative Results on NVIDIA Dynamic
Scene Dataset

Though not primarily collected for physics learning, we
also evaluate our model on two simple scenes from NVIDIA
Dynamic Scene Dataset [79] selected by NVFi [30]. The
quantitative results are shown in Table 5.

Table 5. Results on NVIDIA Dynamic Scene Dataset.

Interpolation Extrapolation
PSNR?T SSIM?T LPIPS||PSNRT SSIMt LPIPS|

T-NeRF 23.078 0.684 0.355 |21.120 0.707 0.358
D-NeRF 22.827 0.711 0.309 |20.633 0.709 0.327
TiNeuVox 28.304 0.868 0.216 |24.556 0.863 0.215

T-NeRFprnn 18.443 0.597 0.439 |17.975 0.605 0.428
HexPlanepryy | 24971 0.818 0.281 |24.473 0.818 0.279

NVFi 27.138 0.844 0.231 |28.462 0.876 0.214
DefGS 26.662 0.893 0.127 |24.240 0.895 0.140
DefGS,,. 1 26972 0.890 0.128 |27.529 0.927 0.102

FreeGave (Ours) | 27.345 0.896 0.097 |29.005 0.933 0.072

F. Quantitative Results on Collision Cases

We evaluate on two more scenes with collisions: We extend
the dining scene of Dynamic Indoor Scene Dataset into two
collision cases with different collision patterns. The first
scene has 28 frames x 25 views for training without observ-
ing collision, 28 frames x 5 views for interpolation, and 8 x
30 views for extrapolation where the collision happens. The
second scene has 46 frames x 25 views for training with the
collision observed, 46 frames x 5 views for interpolation,
and 14 x 30 views for extrapolation.

Table 6. Results on four scenes of oscillations or collistions.
Collisions

Interpolation Extrapolation
PSNRT SSIMtT LPIPS| | PSNRT SSIMf LPIPS|

TiNeuVox 23.429  0.794 0.277 | 20.794  0.807 0.250
NVFi 20.301  0.690 0.413 | 22917  0.780 0.313
DefGS 29411  0.894 0.117 | 23.129  0.867 0.122
DefGS,,, 5 29.424  0.894 0.118 | 28.017  0.907 0.081

FreeGave (Ours) | 29.971 0916  0.074 | 28.426 0.912  0.058

G. Analysis of Computational Costs

We calculate the average time and memory consumption
in training, the average speed and memory consumption in
test, and model sizes for most baselines in Table 7.

We can see that: 1) our method has a clear advantage
over the strong baseline DefGS,,, f; in terms of time and
memory cost in training, thanks to our new and more effi-
cient divergence-free velocity module over the PINN loss;



2) our method is generally better or on par with other base-
lines (TiNeuVox / NVFi / DefGS) in computation cost of
training and test, but our method demonstrates significantly
better extrapolation results (as shown in Tables 1&2).

H. Limitation of Our Model

The main limitation is that our method would fail to pre-
dict abrupt motions, such as an explosion, primarily because
the underlying physics rules are unable to be observed or
learned from visual frames.

I. Details of Segmenting Motion Patterns

For our models and the DefGS / DefGS,,, f; baselines, we
render the segmentation masks after grouping all learned
Gaussian kernels. We follow the rendering module in
Gaussian-Grouping [78] to obtain segmentation masks.
Gaussian-Grouping renders hidden segmentation features in
a size of 16. Therefore, we directly expand our one-hot ob-
ject group into 16 channels and then render masks. More
details are as follows.

I.1. More Details of Our FreeGave

We segment our well-trained Gaussian kernels by their bot-
tleneck vectors h = fpeck(2). To be specific, we build a
grouping feature vector for each Gaussian kernel as h@®Ap,,
where @ means concatenation and )\ is a hyperparameter,
working as smoothing regularization. Then the Gaussian
kernels are simply grouped by K-means algorithm with re-
spect to this built features into C groups.

We choose A as 0 for Genome House and Chessboard
scene, and 0.5 for Factory and Dining Table scene. C is set
as 13 for Dining Table scene and 8 for other three scenes.

I.2. More Details of Segmenting DefGS / DefGS,, ., ;;

Given a well-trained DefGS or DefGS,,, ; model with N
canonical Gaussian kernels, we first assign learnable per-
Gaussian object codes O € (0, 1)NXK to all Gaussian ker-
nels, where K is the maximum number of objects that is
expected to appear in the scene.

After that, we query the position displacements for Gaus-
sians kernels from the well-trained deformation field at time
0 and t respectively, thus obtaining the Gaussians Py at
time 0 and P; at time ¢. Then the per-Gaussian scene flows
M, from time O to ¢ is calculated as M, = P, — P,.

Lastly, two losses proposed in OGC [57] are computed
on the learnable object codes. 1) Dynamic rigid consis-
tency: For the k' object, we first retrieve its (soft) bi-
nary mask O, and feed the tuple { Py, P;, O*} into the
weighted-Kabsch algorithm to estimate its transformation
matrix T}, € R**4 belonging to SE(3) group. Then the

dynamic loss is computed as:

Laynamic = % Z H(ioﬁ (T Op)) - (p+mt)H2
k=1

PEP)

where of, represents the probability of being assigned to the
k" object for a specific point p, and m; € R? represents
the motion vector of p from time 0 to . The operation o
applies the rigid transformation to the point. This loss aims
to discriminate objects with different motions. 2) Spatial
smoothness: For each point p in Py, we first search H
nearest neighboring points. Then the smoothness loss is de-
fined as:

H
Esmooth = % Z (% Z HOP - Oph,”l) 22)
h=1

PEP)
where o, € (0,1)
center point p, and o,, € (0, 1)K represents the object as-
signment of its ‘" neighbouring point. This loss aims to
avoid the over-segmentation issues. More details are pro-
vided in [57].

In our experiments for DefGS and DefGS,,, ¢;, the max-
imum number of predicted objects K is set to be 8. A
softmax activation is applied on per-Gaussian object codes.
During optimization, we adopt the Adam optimizer with a
learning rate of 0.01 and optimize object codes for 1000 it-
erations until convergence.

All quantitative results for scene decomposition are in
Table 8.

represents the object assignment of

J. More Results of Ablation Study

We report all ablation results in Table 9. We conduct all
ablations at a setting of K = 16 originally, while we find
K = 32 is slightly better on Dynamic Indoor Scene dataset.
Nevertheless, this does not influence the analysis to the in-
fluencing factors as shown in the main paper.

K. More Results on Dynamic Object Dataset

The quantitative results for each scene of Dynamic Object
Dataset are in Table 10.

L. More Results on Dynamic Indoor Scene
Dataset

The quantitative results for each scene of Dynamic Indoor
Scene Dataset are in Table 11.

M. More Results on FreeGave-GoPro Dataset

The quantitative results for each scene of FreeGave-GoPro
Dataset are in Table 12.



Table 7. The average time (hours) and GPU memory (GB) cost for training, the inference speed (fps), GPU memory (GB), and model size
(MB) for test on all three datasets.

Dynamic Object Dataset Dynamic Indoor Scene Dataset FreeGave-GoPro Dataset
Training Test Training Test Training Test

Time] Mem] | fpsT Mem| Size] | Time] Mem] | fpsT Mem| Size] | Time] Mem] | fpst Mem| Sizel|
TiNeuVox 0.5 8.0 0.40 2.3 49.8 0.6 8.2 0.51 3.7 49.9 0.6 94 016 4.7 49.6
NVFi 22 22.6 0.11 16.5 1147 2.3 21.5 0.34 16.8  107.9 2.3 233 | 003 231 1214
DefGS 0.8 64 | 1940 5.0 53.1 0.8 59 21.9 4.0 98.1 13 8.4 3.22 34 88.5
DefGS,,, i 2.1 227 | 13.59 52 54.5 6.0 26.4 | 10.98 4.1 101.2 8.0 32,6 | 2.90 5.8 92.1
FreeGave (Ours) 0.8 5.7 19.70 4.0 27.0 1.5 10.4 | 13.60 3.1 55.8 1.9 16.1 | 3.03 8.1 115.7

Table 8. Quantitative results of scene decomposition on the Synthetic Indoor Scene dataset.
Gnome House Chessboard
APT PQT F11 Pret Rect mloUT | AP?T PQT FIt Pret Rect  mloU?
Mask2Former [11] | 60.89 73.05 77.32 8532 70.69 6694 | 82.68 8135 90.81 97.54 8494 76.17
D-NeRF [51] | 80.54 62.24 8528 85.28 8528 5482 | 57.12 48.11 6022 5620 6485 48.97
NVFi [30] | 100.00 85.01 100.00 100.00 100.00 68.01 | 6797 5795 7696 7696 7696  56.79
DefGS [75] | 86.67 86.04 9144 8591 97.74 7421 | 4290 49.48 60.75 56.53 65.64 50.29
DefGS,p; | 99.12  96.02 99.17 98.36 100.00 7745 | 31.27 4755 54.87 56.87 5301 4441
FreeGave (Ours) | 100.00 97.59 100.00 100.00 100.00 78.07 | 100.00 92.83 100.00 100.00 100.00 79.57
Dining Table Factory
AP?T PQT F171 Pret Rect mloUt | AP?T PQT F11 Pret Rect mloU?
Mask2Former [11] | 77.65 84.61 8742 9744 7928 76.80 | 40.25 5354 5760 99.01 40.61 37.76
D-NeRF [51] | 74.05 57.15 693 59.35 8327 61.82 | 17.33 17.08 21.29 2535 1835 20.72
NVFi[30] | 98.01 91.81 9895 9899 9892 76.68 | 98.86 80.17 99.09 99.09 99.09 69.07
DefGS [75] | 57.66 6292 7051 69.12 7195 55.73 19.69 3196 43.02 4127 4494  37.59
DefGS,,p; | 67.02 72,12 7837 6485 99.01 76.19 | 23.64 3530 4690 5749 3960 29.23
FreeGave (Ours) | 98.99 98.36 99.97 9998 9997 81.89 | 100.00 96.31 100.00 100.00 100.00 82.55

N. More Results on ParticleNeRF Dataset

The quantitative results for each scene of ParticleNeRF
Dataset are in Table 13.

0. Additional Qualitative Results

We present additional qualitative results for future frame ex-
trapolation in Figures 7, 8,9, 10, 11, 12, 13, 14, and 15. We
also present additional qualitative results for scene decom-
position in Figures 16, 17, 18, and 19.



Table 9. Complete ablation study results on both Dynamic Object Dataset and Dynamic Indoor Scene Dataset

Dynamic Object Dataset
Interpolation Extrapolation
Code z Taeform v(p;, 1) K PSNRT  SSIMf  LPIPS| | PSNRT SSIMT LPIPS|

(€))] learnable full full 16 38.722 0.995 0.005 25.961 0.975 0.025

2) field full wlo B(p,) 16 39.126 0.995 0.005 29.400 0.986 0.010

3) field full w/o decomp 16 39.111 0.995 0.005 29.432 0.985 0.009

“4) field full full 8 39.324 0.996 0.004 30.972 0.989 0.009

4) field full full 32 39.318 0.996 0.004 31.438 0.990 0.007

5) field X full 16 20.974 0.945 0.068 17.927 0.922 0.088

(6) field wlo z full 16 39.151 0.995 0.005 31.217 0.988 0.009

@] field w/o ds full 16 39.191 0.995 0.005 31.704 0.990 0.007
FreeGave field full full 16 39.393 0.995 0.005 31.987 0.990 0.007

Dynamic Indoor Scene Dataset
Interpolation Extrapolation
Code z faeform v(p,,t) K PSNR?T SSIM?T LPIPS| PSNR?T SSIM?T LPIPS|

(@) learnable full full 16 32.343 0.930 0.091 30.444 0.933 0.087

2) field full wio B(p,) 16 31.471 0.921 0.108 32.316 0.944 0.077

3) field full w/o decomp 16 31.707 0.921 0.106 31.204 0.943 0.071

4) field full full 8 32.005 0.929 0.093 34.159 0.962 0.053

4) field full full 16 31.996 0.929 0.092 34.716 0.965 0.051

) field X full 16 - - - - - -

(6) field w/o z full 16 31.603 0.921 0.107 33.408 0.955 0.067

@) field w/0 s full 16 32.094 0.929 0.092 34.504 0.964 0.052
FreeGave field full full 32 32.287 0.930 0.092 35.019 0.966 0.051




Table 10. Per-scene quantitative results on Dynamic Object Dataset.

Falling Ball Bat
Methods Interpolation Extrapolation Interpolation Extrapolation
PSNRT SSIMt LPIPS| | PSNRT SSIM{ LPIPS| | PSNRT SSIMt LPIPS| | PSNRT SSIM{ LPIPS|
T-NeRF [51] | 14921  0.782 0326 | 15.418 0.793 0.308 | 13.070 0.836 0234 | 13897 0.834  0.230
D-NeRF [51] | 15.548  0.665 0.435 | 15.116 0.644 0427 | 14.087 0.845 0.212 | 15.406  0.887 0.175
TiNeuVox [15] | 35.458  0.974 0.052 | 20.242  0.959 0.067 | 16.080  0.908 0.108 | 16952 0930  0.115
T-NeRFp;ny | 17.687  0.775 0.368 | 17.857  0.829 0265 | 16.412  0.903 0.197 | 18983 0.930  0.132
HexPlanep;nn | 32.144  0.965 0.065 | 20.762  0.951 0.081 | 23.399 0.958 0.057 | 21.144  0.951 0.064
NVFi [30] | 35.826  0.978 0.041 | 31.369 0.978 0.041 | 23325 0.964  0.046 | 25.015 0.968 0.042
DefGS [75] | 37.535 0995  0.009 | 20442 0976  0.033 | 38.750 0997 0.004 | 17.063 0936  0.072
DefGS,,.,r; | 38.606 0.996  0.010 | 24.873  0.985 0.015 | 38.075 0.997  0.004 | 28950 0.980  0.015
FreeGave (Ours) | 42.369  0.998 0.003 | 38.321 0.997  0.003 | 39.662 0.997 0.002 | 27.235 0.982  0.013
Fan Telescope
Methods Interpolation Extrapolation Interpolation Extrapolation
PSNRT SSIMft LPIPS| | PSNRT SSIMft LPIPS| | PSNRT SSIM{ LPIPS| | PSNRT SSIM{ LPIPS|
T-NeRF [51] | 8.001 0.308 0.646 8.494  0.392 0.593 | 13.031 0.615 0472 | 13892 0.670  0.417
D-NeRF [51] | 7915  0.262 0.690 8.624 0370  0.623 | 13.295 0.609 0.469 | 14967 0.700  0.385
TiNeuVox [15] | 24.088  0.930 0.104 | 20932  0.935 0.078 | 31.666  0.982 0.041 | 20.456  0.921 0.067
T-NeRFpnn | 9.233  0.541 0.508 9.828  0.606  0.443 | 14293 0.739 0366 | 15752 0.804  0.298
HexPlanep;ny | 22.822  0.921 0.079 | 19.724 0919 0.080 | 25381 0.948 0.066 | 23.165 0932  0.074
NVFi [30] | 25.213  0.948 0.049 | 27.172  0.963 0.037 | 26.487  0.959 0.048 | 27.101  0.963 0.046
DefGS [75] | 35.858 0.985  0.017 | 20932 0.948 0.038 | 37.502 0.996  0.003 | 20.684 0.927 0.048
DefGS,,,p; | 35217 0984  0.019 | 26.648 0.972 0.023 | 37.568 0.996 0.003 | 34.096 0.994  0.005
FreeGave (Ours) | 35.767  0.985 0.013 | 32393 0986  0.009 | 40.332 0.998 0.002 | 40.401 0.998  0.002
Shark Whale
Methods Interpolation Extrapolation Interpolation Extrapolation
PSNRT SSIM?T LPIPS| | PSNRT SSIM?T LPIPS] | PSNRT SSIM?tT LPIPS| | PSNRT SSIM?tT LPIPS|
T-NeRF [51] | 13.813  0.853 0223 | 15325 0.882  0.193 | 16.141  0.860 0212 | 15880 0.860  0.203
D-NeRF [51] | 17.727  0.903 0.150 | 19.078 0.936  0.092 | 16373  0.898 0.154 | 14771 0.883 0.171
TiNeuVox [15] | 23.178  0.971 0.059 | 19.463 0.950  0.050 | 37.455 0.994 0.016 | 19.624 0.943 0.063
T-NeRFp;yy | 17315  0.878 0.177 | 18.739  0.921 0.115 | 16.778  0.927 0.141 15974 0919 0.127
HexPlanep;ny | 28.874  0.976 0.040 | 22330 0.961 0.047 | 29.634  0.981 0.035 | 21.391  0.961 0.053
NVFi [30] | 32.072 0.984 0.024 | 28.874  0.982 0.021 | 31.240 0.986 0.025 | 26.032 0.978 0.029
DefGS [75] | 37.802  0.994 0.006 | 19.924  0.957 0.034 | 39.740 0997  0.004 | 20.048 0.951 0.046
DefGS,,,p; | 37.327 0994  0.006 | 29.240 0.987  0.007 | 37.101 0.996  0.005 | 28.686 0.986 0.012
FreeGave (Ours) | 40.211  0.996 0.004 | 29236 0.990  0.005 | 38.015 0.997 0.003 | 28950 0.989  0.009




Table 11. Per-scene quantitative results on Dynamic Indoor Scene Dataset.

Gnome House Chessboard
Methods Interpolation Extrapolation Interpolation Extrapolation
PSNRT SSIMtT LPIPS| | PSNRT SSIMT LPIPS] | PSNRT SSIMT LPIPS] | PSNRT SSIMT LPIPS)
T-NeRF [51] | 26.094 0.716 0.383 23.485 0.643 0.419 25.517 0.796 0.294 20.228 0.708 0.365
D-NeRF [51] | 27.000 0.745 0.319 21.714  0.641 0.367 24.852 0.774 0.308 19.455 0.675 0.384
TiNeuVox [15] | 30.646 0.831 0.253 21.418 0.699 0.326 33.001 0917 0.177 19.718 0.765 0.310
T-NeRFp;nyn | 15.008 0.375 0.668 16.200  0.409 0.651 16.549 0.457 0.621 17.197 0.472 0.618
HexPlanepynpn | 23.764 0.658 0.510 22.867 0.658 0.510 24.605 0.778 0.412 21.518 0.748 0.428
NSFF [32] | 31.418 0.821 0.294 25.892 0.750 0.327 32514  0.810 0.201 21.501 0.805 0.282
NVFi [30] | 30.667 0.824 0.277 30.408 0.826 0.273 30.394  0.888 0.215 27.840 0.872 0.219
DefGS [75] | 32.041 0.918 0.132 21.703 0.775 0.207 27.355 0.912 0.147 20.032 0.808 0.218
DefGS,ps | 32.881 0.919 0.132 33.630  0.953 0.077 26.200  0.907 0.156 26.730 0.917 0.110
FreeGave (Ours) | 32.791 0.923 0.103 36.458  0.963 0.062 35.388  0.962 0.061 35.016 0.970 0.044
Factory Dining Table
Methods Interpolation Extrapolation Interpolation Extrapolation
PSNRT  SSIMt LPIPS] | PSNRT SSIM?T LPIPS| | PSNRT SSIM{ LPIPS| | PSNRT SSIMT LPIPS|
T-NeRF [51] | 26.467 0.741 0.328 24.276 0.722 0.344 21.699 0.716 0.338 20.977 0.725 0.324
D-NeRF [51] | 28.818 0.818 0.252 22.959 0.746 0.303 20.851 0.725 0.319 19.035 0.705 0.341
TiNeuVox [15] | 32.684 0.909 0.148 22.622 0.810 0.229 23596  0.798 0.274 20.357 0.804 0.258
T-NeRFp;nN | 16.634 0.446 0.624 17.546 0.480 0.609 16.807 0.486 0.640 18.215 0.548 0.595
HexPlanep;npn | 27.200 0.826 0.283 24.998 0.792 0.312 25.291 0.788 0.350 22.979 0.771 0.355
NSFF [32] | 33975 0919 0.152 26.647 0.855 0.196 19.552  0.665 0.464 22.612 0.770 0.351
NVFi [30] | 32.460 0.912 0.151 31.719 0.908 0.154 29.179  0.885 0.199 29.011 0.898 0.171
DefGS [75] | 33.629 0.943 0.096 22.820  0.839 0.169 27.680  0.890 0.145 20.965 0.855 0.157
DefGS,,,, s | 33.643 0.943 0.097 33.049 0.954 0.062 27.957 0.891 0.145 30.975 0.955 0.060
FreeGave (Ours) | 33.316 0.943 0.079 35.765 0.966 0.048 27.652  0.892 0.124 32.838 0.963 0.048
Table 12. Per-scene quantitative results on FreeGave-GoPro Dataset.
Pen & Tape 1 Pen & Tape 2
Methods Interpolation Extrapolation Interpolation Extrapolation
PSNRT  SSIMt LPIPS] | PSNRT SSIM?T LPIPS| | PSNRT SSIMt LPIPS] | PSNRT SSIMT LPIPS|
TiNeuVox [15] | 19.368 0.758 0.304 20.127 0.795 0.289 19.594  0.732 0.334 20.514 0.779 0.296
NVFi [30] | 21.397 0.816 0.243 23.869 0.824 0.258 22.31 0.813 0.245 23.574 0.806 0.269
DefGS [75] | 29.598 0.933 0.080 20.284  0.865 0.163 27.587  0.909 0.098 20.674 0.861 0.169
DefGS,ppq | 29.571 0.932 0.081 26.289 0.922 0.108 27.456  0.909 0.099 27.124 0.915 0.120
FreeGave (Ours) | 29.412 0.927 0.087 29.001 0.936 0.090 27.498  0.907 0.098 28.842 0.925 0.107
Box Wrist Rest
Methods Interpolation Extrapolation Interpolation Extrapolation
PSNRT  SSIMt LPIPS| | PSNRT SSIMt LPIPS| | PSNRT SSIMt LPIPS| | PSNRT SSIM{ LPIPS|
TiNeuVox [15] | 19.464 0.726 0.318 23.958 0.807 0.247 19.133 0.751 0.315 18.204 0.727 0.342
NVFi [30] | 19.391 0.777 0.282 24.867 0.806 0.263 13.235 0.570 0.490 19.222 0.683 0.431
DefGS [75] | 28.448 0.918 0.087 25.656 0.904 0.117 28.178 0.923 0.100 18.834 0.809 0.220
DefGSpo i | 29.571 0.932 0.081 26.289 0.922 0.108 27.938 0.921 0.102 22.741 0.856 0.170
FreeGave (Ours) | 28.339 0.916 0.088 30.964  0.935 0.084 28.708  0.925 0.098 24.093 0.867 0.159
Hammer Collision
Methods Interpolation Extrapolation Interpolation Extrapolation
PSNRT SSIMt LPIPS| | PSNRT SSIMt LPIPS] | PSNRT SSIM{ LPIPS] | PSNRT SSIMT LPIPS)
TiNeuVox [15] 18.75 0.733 0.324 22.638 0.710 0.251 17.848 0.741 0.316 18.158 0.743 0.329
NVFi [30] | 22.817 0.817 0.235 25.526 0.830 0.241 14.530  0.638 0.438 19.422 0.717 0.391
DefGS [75] | 28.141 0916 0.089 23.995 0.899 0.123 28.493 0923 0.089 18.619 0.808 0.228
DefGS,,, i | 28.478 0.917 0.088 29.392 0.928 0.095 28.125 0.923 0.092 23512 0.871 0.157
FreeGave (Ours) | 28.314 0.917 0.089 30.090  0.932 0.091 28.434 0925 0.088 25.571 0.886 0.139




Table 13. Per-scene quantitative results on ParticleNeRF Dataset.

Robot Robot Task
Methods Interpolation Extrapolation Interpolation Extrapolation
PSNRT SSIMft LPIPS| | PSNRT SSIM{ LPIPS| | PSNRT SSIM{ LPIPS| | PSNRT SSIM{ LPIPS|
TiNeuVox [15] | 32.079  0.975 0.063 17.287  0.861 0.162 | 34.672 0.984 0.047 | 21.078 0.906  0.097
NVFi [30] | 28.740 0.962 0.065 | 18.518 0.875 0.125 | 30906 0.971 0.051 | 26.130  0.945 0.067
DefGS [75] | 34.713  0.989 0.015 | 15.793  0.872 0.129 | 37.218  0.994 0.006 | 19.193 0.911 0.079
DefGS,,,pi | 33.924  0.987 0.017 | 17.965 0.892  0.092 | 37.640  0.994 0.006 | 26.566 0.962  0.023
FreeGave (Ours) | 33.298  0.986 0.017 | 19.361 0.901 0.076 | 37.538  0.994 0.006 | 25526 0954  0.029
Cloth Wheel
Methods Interpolation Extrapolation Interpolation Extrapolation
PSNRT SSIMft LPIPS| | PSNRT SSIMt LPIPS| | PSNRT SSIM{ LPIPS| | PSNRT SSIM{ LPIPS|
TiNeuVox [15] | 32.406  0.981 0.052 | 18.476  0.885 0.117 | 28.544  0.946 0.058 | 22599 0.880  0.079
NVFi [30] | 27.309  0.951 0.075 | 18904 0.894  0.116 | 26.225 0.935 0.056 | 12990 0.790  0.153
DefGS [75] | 34.072 0.991 0.010 | 16.687 0.880  0.115 | 30.290 0.971 0.028 | 25840  0.945 0.034
DefGS,,.,ri | 32.547  0.986 0.012 | 26.655 0.964  0.023 | 28.537 0.968 0.029 | 22393 0914  0.063
FreeGave (Ours) | 32.604  0.987 0.011 | 27934 0966  0.026 | 30.350 0.971 0.028 | 30926 0.972  0.022
Spring Pendulums
Methods Interpolation Extrapolation Interpolation Extrapolation
PSNRT SSIMft LPIPS| | PSNRT SSIMt LPIPS| | PSNRT SSIM{ LPIPS| | PSNRT SSIM{ LPIPS|
TiNeuVox [15] | 32.731  0.990 0.022 | 20.448  0.891 0.073 | 36.093  0.991 0.028 | 22.551  0.905 0.084
NVFi [30] | 30.315 0.982 0.020 | 15.575 0.853 0.107 | 29.691 0.970 0.046 | 16922 0.844  0.146
DefGS [75] | 35.684  0.995 0.004 | 19.286  0.905 0.060 | 39.392  0.997 0.003 | 18.428  0.889 0.082
DefGS,,.,pi | 34.606  0.995 0.004 | 23.648 0.953 0.024 | 37.973  0.996 0.004 | 19.154  0.903 0.075
FreeGave (Ours) | 38.465  0.997 0.003 | 25501 0.959  0.015 | 38.992 0.997 0.003 | 30.696  0.985 0.009
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Figure 7. Qualitative results for future frame extrapolation on Dynamic Object Dataset.



FreeGave (Ours) DefGS TiNeuVox

EE B

DefGS

FreeGave (Ours)

Interpolation Extrapolation Interpolation Extrapolation

t=0 t=05 t=1 t=0 t=0.5 t=1

NVFi

DefGS,,;

GT

Telescope

i
' E

Figure 8. Qualitative results for future frame extrapolation on Dynamic Object Dataset.
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Figure 9. Qualitative results for future frame extrapolation on ParticleNeRF Dataset.
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Figure 10. Qualitative results for future frame extrapolation on ParticleNeRF Dataset.
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Figure 11. Qualitative results for future frame extrapolation on Dynamic Indoor Scene Dataset.
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Figure 12. Qualitative results for future frame extrapolation on “Pen & Tape 2" of FreeGave-GoPro Dataset.
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Figure 13. Qualitative results for future frame extrapolation on “Box” of FreeGave-GoPro Dataset.
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Figure 14. Qualitative results for future frame extrapolation on “Hammer” of FreeGave-GoPro Dataset.
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Figure 15. Qualitative results for future frame extrapolation on “Collision” of FreeGave-GoPro Dataset.
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Figure 16. Qualitative results for unsupervised motion segmentation on “Chessboard” of Dynamic Indoor Scene Dataset.
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Figure 17. Qualitative results for unsupervised motion segmentation on “Gnome House” of Dynamic Indoor Scene Dataset.
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Figure 18. Qualitative results for unsupervised motion segmentation on “Dining Table” of Dynamic Indoor Scene Dataset.
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Figure 19. Qualitative results for unsupervised motion segmentation on “Factory” of Dynamic Indoor Scene Dataset.
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