FreeGave: 3D Physics Learning from Dynamic Videos by Gaussian Velocity

Supplementary Material

A. Proof of Divergence-free Property

The velocity field is defined as:

$$\boldsymbol{v}(\boldsymbol{p}_t, t) = \mathbb{V}_t \cdot \mathcal{B}(\boldsymbol{p}_t) = \sum_{k=1}^6 \mathbb{V}_t^k \mathcal{B}^k(\boldsymbol{p}_t).$$
(10)

In order to prove the divergence-free property, we just need to show $\nabla_{\boldsymbol{p}_t} \cdot \boldsymbol{v}(\boldsymbol{p}_t, t) = 0$. Since \mathbb{V}_t is totally irrelevant to \boldsymbol{p}_t , we only need to show each basis vector function follows $\nabla_{\boldsymbol{p}_t} \cdot \mathcal{B}^k(\boldsymbol{p}_t) = 0$, *i.e.*:

$$\nabla_{\boldsymbol{p}_{t}} \cdot \boldsymbol{v}(\boldsymbol{p}_{t}, t) = \nabla_{\boldsymbol{p}_{t}} \cdot (\mathbb{V}_{t} \cdot \mathcal{B}(\boldsymbol{p}_{t}))$$
(11)

$$=\sum_{k=1}^{o} \mathbb{V}_{t}^{k} \nabla_{\boldsymbol{p}_{t}} \cdot \mathcal{B}^{k}(\boldsymbol{p}_{t}) = 0.$$
(12)

Next, we show each of the basis vector function is divergence-free:

$$\nabla_{\boldsymbol{p}_t} \cdot \mathcal{B}^1(\boldsymbol{p}_t) = \nabla_{\boldsymbol{p}_t} \cdot \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} = \frac{\partial 1}{\partial p_t^x} = 0; \quad (13)$$

$$\nabla_{\boldsymbol{p}_t} \cdot \mathcal{B}^2(\boldsymbol{p}_t) = \nabla_{\boldsymbol{p}_t} \cdot \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} = \frac{\partial 1}{\partial p_t^y} = 0; \quad (14)$$

$$\nabla_{\boldsymbol{p}_t} \cdot \boldsymbol{\mathcal{B}}^3(\boldsymbol{p}_t) = \nabla_{\boldsymbol{p}_t} \cdot \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} = \frac{\partial 1}{\partial p_t^z} = 0; \quad (15)$$

$$\nabla_{\boldsymbol{p}_t} \cdot \mathcal{B}^4(\boldsymbol{p}_t) = \nabla_{\boldsymbol{p}_t} \cdot \begin{bmatrix} -p_t^y & p_t^x & 0 \end{bmatrix}$$
(16)
$$\partial - p_t^y & \partial p_t^x$$

$$= \frac{\partial - p_t^*}{\partial p_t^x} + \frac{\partial p_t^*}{\partial p_t^y} = 0; \tag{17}$$

$$\nabla_{\boldsymbol{p}_t} \cdot \boldsymbol{\mathcal{B}}^5(\boldsymbol{p}_t) = \nabla_{\boldsymbol{p}_t} \cdot \begin{bmatrix} p_t^z & 0 & -p_t^x \end{bmatrix}$$
(18)

$$\frac{\partial p_t^z}{\partial p_t^x} + \frac{\partial - p_t^x}{\partial p_t^z} = 0; \tag{19}$$

$$\nabla_{\boldsymbol{p}_t} \cdot \mathcal{B}^6(\boldsymbol{p}_t) = \nabla_{\boldsymbol{p}_t} \cdot \begin{bmatrix} 0 & -p_t^z & p_t^y \end{bmatrix}$$
(20)
$$\partial_{\boldsymbol{p}_t} - p_t^z & \partial_t p_t^y \end{bmatrix}$$

$$= \frac{\partial - p_t^2}{\partial p_t^y} + \frac{\partial p_t^y}{\partial p_t^z} = 0.$$
(21)

B. Implementation Details

=

We implement our networks by MLPs, and the detailed configurations are as follows:

- f_{code}: This network includes 4 MLP layers and each hidden layer has a size of 128 neurons followed by ReLU. In addition, we make a degree of 8 positional encoding for input positions. We set the dimension of the output physics code L as 16.
- f_{neck}: This network has MLP layers as L → 4L → 4L → K. We choose the bottleneck vector dimension K as 32 for Dynamic Indoor Scene dataset and 16 for other two datasets.

- f_{weight} : This network includes 5 MLP layers and each hidden layer has a size of 128 neurons. In addition, we make a degree of 8 positional encoding for input positions, and we add a ResNet connection on the 3rd layer. The output vector has a dimension of K * 6 and is reshaped as a matrix of $K \times 6$.
- f_{deform}: For two synthetic datasets, this network includes 6 MLP layers and each hidden layer has a size of 128 neurons, while it includes 8 MLP layers and each hidden layer has a size of 256 neurons for the challenging FreeGave-GoPro dataset. In addition, we also make a degree of 8 positional encoding for input positions, and the physics code z is concatenated to the encoded position. We also add a ResNet connection on the third layer.

C. Details of Deformation-aided Optimization

We train our models on all datasets on a single NVIDIA 3090 GPU. We normalize the total time span in all datasets to be 1. Δt is set to be 1/60 in both Dynamic Object dataset and Dynamic Indoor Scene dataset, while it is set as 1/88 in the challenging FreeGave-GoPro dataset.

D. Details of All Datasets

Dynamic Object Dataset [30]: This dataset contains 6 moving objects with a white background, and the corresponding motions include: 1. part-wise rigid motions with accelerations, *i.e.*, rotating fan, freely falling basketball in a gravitational field, and rotating telescope; 2. self-propelling deformable objects, *i.e.*, a bat flapping wings, a swimming whale, and a swimming shark. Each scene contains 15 viewing angles, where the first 46 frames from 12 selected viewing angles are used as training split, *i.e.*, 552 frames in total, and the first 46 frames from the other 3 viewing angles are used for evaluating novel view interpolation within the training time period, *i.e.*, 138 frames in total. All the remaining 14 frames from 15 viewing angles are used to evaluate future frame extrapolation, *i.e.*, 210 frames.

Dynamic Indoor Scene Dataset [30]: This dataset contains 4 indoor scenes, each containing 3 to 5 moving objects, and each moving object is undergoing different rigid motions. Each scene contains 30 viewing angles, where the first 46 frames from 25 selected viewing angles are used as the training split, *i.e.*, 1150 frames in total, and the first 46 frames from the other 5 viewing angles are used for evaluating novel view interpolation within the training time period, *i.e.*, 230 frames in total. All the remaining 14 frames from 30 viewing angles are used to evaluate future frame extrapolation, *i.e.*, 450 frames. **ParticleNeRF Dataset** [1]: This dataset includes 6 challenging dynamic objects.

- **Object #1: Robot**. This scene includes a robot arm waving from one side to another side.
- **Object #2: Robot Task**. This scene shows a robot arm putting a box onto a sliding platform.
- **Object #3: Wheel**. This scene includes a constant rotating wheel.
- **Object #4: Spring**. This scene shows a box tied on a spring, which undergoes a harmonic oscillation motion. The training and the test observation period in total form a whole oscillation period.
- **Object #5: Pendulums**. This scene includes two swing pendulums, each undergoing harmonic oscillation motion. The training and the test observation period in total form a whole oscillation period.
- **Object #6: Cloth**. This scene includes a flat cloth being folded.

Each scene contains 40 viewing angles. For Object #1 & #2, we choose the first 53 frames from 36 selected viewing angles as the training split, *i.e.* 1908 frames in total, and the first 53 frames from the other 4 viewing angles for evaluating novel view interpolation within the training time period, *i.e.*, 212 frames in total. All the remaining 17 frames from 40 viewing angles are used to evaluate future frame extrapolation, *i.e.*, 680 frames. For Object #3 & #4 & #5 & #6, the first 104 frames from 36 selected viewing angles are used as the training split, *i.e.*, 3744 frames in total, and the first 104 frames from the other 4 viewing angles are used for evaluating novel view interpolation within the training time period, *i.e.*, 416 frames in total. All the remaining 36 frames from 40 viewing angles are used to evaluate future frame extrapolation, *i.e.*, 1440 frames.

FreeGave-GoPro Dataset: This dataset includes 6 challenging real-world dynamic scenes.

- Scenes #1/#2: Pen & Tape. There is a person holding a pen and trying to pass it through the hole of a static tape. The difference between these two scenes is that there are more static objects in the second scene, introducing more visual occlusions and requiring more accurate separation between moving areas and static areas. The difficulty lies in the motion of one object which is going to penetrate through another in future.
- Scene #3: Box. This scene contains a drawer-like box, and a person is trying to close it. The difficulty lies in a tight combination of the moving part and the static part of the box, especially in future.
- Scene #4: Hammer. This scene contains a hammer moving on the topside of a box. The difficulty lies in the direct contact of moving objects and static objects, which requires sharp separation of diverse motion patterns in order to keep right static/moving states in future.
- Scene #5: Collision. This scene contains a cube and a

cup moving towards each other. The difficulty is the different directions of two motions. It is hard to keep the shapes of these two objects in future.

• Scene #6: Wrist Rest. A person is trying to bend a wrist rest. The difficulty is that the object is deformable and the motion is thus not rigid or part-wise rigid.

E. Quantitative Results on NVIDIA Dynamic Scene Dataset

Though not primarily collected for physics learning, we also evaluate our model on two simple scenes from NVIDIA Dynamic Scene Dataset [79] selected by NVFi [30]. The quantitative results are shown in Table 5.

Table 5. Results on NVIDIA Dynamic Scene Dataset.												
	In	terpolati	on	Extrapolation								
	PSNR ↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓						
T-NeRF	23.078	0.684	0.355	21.120	0.707	0.358						
D-NeRF	22.827	0.711	0.309	20.633	0.709	0.327						
TiNeuVox	28.304	0.868	0.216	24.556	0.863	0.215						
T-NeRF _{PINN}	18.443	0.597	0.439	17.975	0.605	0.428						
HexPlane _{PINN}	24.971	0.818	0.281	24.473	0.818	0.279						
NVFi	27.138	0.844	0.231	28.462	0.876	0.214						
DefGS	26.662	0.893	0.127	24.240	0.895	0.140						
$DefGS_{nvfi}$	26.972	0.890	0.128	27.529	0.927	<u>0.102</u>						
FreeGave (Ours)	27.345	0.896	0.097	29.005	0.933	0.072						

F. Quantitative Results on Collision Cases

We evaluate on two more scenes with collisions: We extend the *dining* scene of Dynamic Indoor Scene Dataset into two collision cases with different collision patterns. The first scene has 28 frames \times 25 views for training without observing collision, 28 frames \times 5 views for interpolation, and 8 \times 30 views for extrapolation where the collision happens. The second scene has 46 frames \times 25 views for training with the collision observed, 46 frames \times 5 views for interpolation, and 14 \times 30 views for extrapolation.

Table 6. Results on four scenes of oscillations or collistions.

			Colli	sions					
	Iı	nterpolatio	on	Extrapolation					
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓			
TiNeuVox	23.429	0.794	0.277	20.794	0.807	0.250			
NVFi	20.301	0.690	0.413	22.917	0.780	0.313			
DefGS	29.411	0.894	0.117	23.129	0.867	0.122			
$DefGS_{nvfi}$	29.424	0.894	0.118	28.017	0.907	0.081			
FreeGave (Ours)	29.971	0.916	0.074	28.426	0.912	0.058			

G. Analysis of Computational Costs

We calculate the average time and memory consumption in training, the average speed and memory consumption in test, and model sizes for most baselines in Table 7.

We can see that: 1) our method has a clear advantage over the strong baseline $DefGS_{nvfi}$ in terms of time and memory cost in training, thanks to our new and more efficient divergence-free velocity module over the PINN loss;

2) our method is generally better or on par with other baselines (TiNeuVox / NVFi / DefGS) in computation cost of training and test, but our method demonstrates significantly better extrapolation results (as shown in Tables 1&2).

H. Limitation of Our Model

The main limitation is that our method would fail to predict abrupt motions, such as an explosion, primarily because the underlying physics rules are unable to be observed or learned from visual frames.

I. Details of Segmenting Motion Patterns

For our models and the DefGS / DefGS_{nvfi} baselines, we render the segmentation masks after grouping all learned Gaussian kernels. We follow the rendering module in Gaussian-Grouping [78] to obtain segmentation masks. Gaussian-Grouping renders hidden segmentation features in a size of 16. Therefore, we directly expand our one-hot object group into 16 channels and then render masks. More details are as follows.

I.1. More Details of Our FreeGave

We segment our well-trained Gaussian kernels by their bottleneck vectors $h = f_{neck}(z)$. To be specific, we build a grouping feature vector for each Gaussian kernel as $h \oplus \lambda p_0$, where \oplus means concatenation and λ is a hyperparameter, working as smoothing regularization. Then the Gaussian kernels are simply grouped by K-means algorithm with respect to this built features into C groups.

We choose λ as 0 for Genome House and Chessboard scene, and 0.5 for Factory and Dining Table scene. C is set as 13 for Dining Table scene and 8 for other three scenes.

I.2. More Details of Segmenting DefGS / DefGS_{nvfi}

Given a well-trained DefGS or DefGS_{*nvfi*} model with N canonical Gaussian kernels, we first assign learnable per-Gaussian object codes $O \in (0, 1)^{N \times K}$ to all Gaussian kernels, where K is the maximum number of objects that is expected to appear in the scene.

After that, we query the position displacements for Gaussians kernels from the well-trained deformation field at time 0 and t respectively, thus obtaining the Gaussians P_0 at time 0 and P_t at time t. Then the per-Gaussian scene flows M_t from time 0 to t is calculated as $M_t = P_t - P_0$.

Lastly, two losses proposed in OGC [57] are computed on the learnable object codes. 1) **Dynamic rigid consistency:** For the k^{th} object, we first retrieve its (soft) binary mask O^k , and feed the tuple $\{P_0, P_t, O^k\}$ into the weighted-Kabsch algorithm to estimate its transformation matrix $T_k \in \mathbb{R}^{4\times 4}$ belonging to SE(3) group. Then the dynamic loss is computed as:

$$\ell_{dynamic} = \frac{1}{N} \sum_{\boldsymbol{p} \in \boldsymbol{P}_0} \left\| \left(\sum_{k=1}^{K} o_{\boldsymbol{p}}^k \cdot (\boldsymbol{T}_k \circ \boldsymbol{p}) \right) - (\boldsymbol{p} + \boldsymbol{m}_t) \right\|_2$$

where o_p^k represents the probability of being assigned to the k^{th} object for a specific point p, and $m_t \in \mathbb{R}^3$ represents the motion vector of p from time 0 to t. The operation \circ applies the rigid transformation to the point. This loss aims to discriminate objects with different motions. 2) Spatial smoothness: For each point p in P_0 , we first search H nearest neighboring points. Then the smoothness loss is defined as:

$$\ell_{smooth} = \frac{1}{N} \sum_{\boldsymbol{p} \in \boldsymbol{P}_0} \left(\frac{1}{H} \sum_{h=1}^{H} \|\boldsymbol{o}_{\boldsymbol{p}} - \boldsymbol{o}_{\boldsymbol{p}_h}\|_1 \right)$$
(22)

where $o_p \in (0,1)^K$ represents the object assignment of center point p, and $o_{p_h} \in (0,1)^K$ represents the object assignment of its h^{th} neighbouring point. This loss aims to avoid the over-segmentation issues. More details are provided in [57].

In our experiments for DefGS and DefGS_{nvfi}, the maximum number of predicted objects K is set to be 8. A softmax activation is applied on per-Gaussian object codes. During optimization, we adopt the Adam optimizer with a learning rate of 0.01 and optimize object codes for 1000 iterations until convergence.

All quantitative results for scene decomposition are in Table 8.

J. More Results of Ablation Study

We report all ablation results in Table 9. We conduct all ablations at a setting of K = 16 originally, while we find K = 32 is slightly better on Dynamic Indoor Scene dataset. Nevertheless, this does not influence the analysis to the influencing factors as shown in the main paper.

K. More Results on Dynamic Object Dataset

The quantitative results for each scene of Dynamic Object Dataset are in Table 10.

L. More Results on Dynamic Indoor Scene Dataset

The quantitative results for each scene of Dynamic Indoor Scene Dataset are in Table 11.

M. More Results on FreeGave-GoPro Dataset

The quantitative results for each scene of FreeGave-GoPro Dataset are in Table 12.

	Dynamic Object Dataset					D	ynamic In	ene Datas	FreeGave-GoPro Dataset						
	Training		Test		Training		Test			Training		Test			
	Time↓	Mem↓	fps↑	Mem↓	Size↓	Time↓	Mem↓	fps↑	Mem↓	Size↓	Time↓	Mem↓	fps↑	Mem↓	Size↓
TiNeuVox	0.5	8.0	0.40	2.3	<u>49.8</u>	0.6	8.2	0.51	<u>3.7</u>	49.9	0.6	<u>9.4</u>	0.16	4.7	49.6
NVFi	2.2	22.6	0.11	16.5	114.7	2.3	21.5	0.34	16.8	107.9	2.3	23.3	0.03	23.1	121.4
DefGS	<u>0.8</u>	<u>6.4</u>	<u>19.40</u>	<u>5.0</u>	53.1	<u>0.8</u>	5.9	21.9	4.0	98.1	<u>1.3</u>	8.4	3.22	3.4	<u>88.5</u>
$DefGS_{nvfi}$	2.1	22.7	13.59	5.2	54.5	6.0	26.4	10.98	4.1	101.2	8.0	32.6	2.90	5.8	92.1
FreeGave (Ours)	0.8	5.7	19.70	4.0	27.0	1.5	10.4	<u>13.60</u>	3.1	<u>55.8</u>	1.9	16.1	<u>3.03</u>	8.1	115.7

Table 7. The average time (hours) and GPU memory (GB) cost for training, the inference speed (fps), GPU memory (GB), and model size (MB) for test on all three datasets.

	Table 8. Quantitative results of scene decomposition on the Synthetic Indoor Scene dataset.												
			Gnom	e House			Chessboard						
	AP↑	PQ↑	F1↑	Pre↑	Rec↑	mIoU↑	AP↑	PQ↑	F1↑	Pre↑	Rec↑	mIoU↑	
Mask2Former [11]	60.89	73.05	77.32	85.32	70.69	66.94	82.68	81.35	90.81	<u>97.54</u>	84.94	76.17	
D-NeRF [51]	80.54	62.24	85.28	85.28	85.28	54.82	57.12	48.11	60.22	56.20	64.85	48.97	
NVFi [30]	100.00	85.01	100.00	100.00	100.00	68.01	67.97	57.95	76.96	76.96	76.96	56.79	
DefGS [75]	86.67	86.04	91.44	85.91	97.74	74.21	42.90	49.48	60.75	56.53	65.64	50.29	
DefGS _{nvfi}	<u>99.12</u>	<u>96.02</u>	<u>99.17</u>	<u>98.36</u>	100.00	<u>77.45</u>	31.27	47.55	54.87	56.87	53.01	44.41	
FreeGave (Ours)	100.00	97.59	100.00	100.00	100.00	78.07	100.00	92.83	100.00	100.00	100.00	79.57	
			Dinin	g Table			Factory						
	AP↑	PQ↑	F1↑	Pre↑	Rec↑	mIoU↑	AP↑	PQ↑	F1↑	Pre↑	Rec↑	mIoU↑	
Mask2Former [11]	77.65	84.61	87.42	97.44	79.28	76.80	40.25	53.54	57.60	99.01	40.61	37.76	
D-NeRF [51]	74.05	57.15	69.3	59.35	83.27	61.82	17.33	17.08	21.29	25.35	18.35	20.72	
NVFi [30]	<u>98.01</u>	<u>91.81</u>	<u>98.95</u>	<u>98.99</u>	98.92	76.68	<u>98.86</u>	80.17	<u>99.09</u>	<u>99.09</u>	<u>99.09</u>	<u>69.07</u>	
DefGS [75]	57.66	62.92	70.51	69.12	71.95	55.73	19.69	31.96	43.02	41.27	44.94	37.59	
DefGS _{nvfi}	67.02	72.12	78.37	64.85	<u>99.01</u>	76.19	23.64	35.30	46.90	57.49	39.60	29.23	
FreeGave (Ours)	98.99	98.36	99.97	99.98	99.97	81.89	100.00	96.31	100.00	100.00	100.00	82.55	

N. More Results on ParticleNeRF Dataset

The quantitative results for each scene of ParticleNeRF Dataset are in Table 13.

O. Additional Qualitative Results

We present additional qualitative results for future frame extrapolation in Figures 7, 8, 9, 10, 11, 12, 13, 14, and 15. We also present additional qualitative results for scene decomposition in Figures 16, 17, 18, and 19.

					Dynamic Object Dataset							
						Interpolation	1		Extrapolation	n		
	Code z	f_{deform}	$\boldsymbol{v}(\boldsymbol{p}_t,t)$	K	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓		
(1)	learnable	full	full	16	38.722	<u>0.995</u>	0.005	25.961	0.975	0.025		
(2)	field	full	w/o $\mathcal{B}(oldsymbol{p}_t)$	16	39.126	0.995	0.005	29.400	0.986	0.010		
(3)	field	full	w/o decomp	16	39.111	<u>0.995</u>	<u>0.005</u>	29.432	0.985	0.009		
(4)	field	full	full	8	<u>39.324</u>	0.996	0.004	30.972	<u>0.989</u>	0.009		
(4)	field	full	full	32	39.318	0.996	0.004	31.438	0.990	0.007		
(5)	field	X	full	16	20.974	0.945	0.068	17.927	0.922	0.088		
(6)	field	w/o <i>z</i>	full	16	39.151	<u>0.995</u>	0.005	31.217	0.988	0.009		
(7)	field	w/o δs	full	16	39.191	<u>0.995</u>	<u>0.005</u>	<u>31.704</u>	0.990	0.007		
FreeGave	field	full	full	16	39.393	<u>0.995</u>	<u>0.005</u>	31.987	0.990	0.007		
						D	ynamic Indoo	r Scene Data	set			
						Interpolation	1		Extrapolation	n		
-	Code z	f_{deform}	$oldsymbol{v}(oldsymbol{p}_t,t)$	K	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓		
(1)	learnable	full	full	16	32.343	0.930	0.091	30.444	0.933	0.087		
(2)	field	full	w/o $\mathcal{B}(oldsymbol{p}_t)$	16	31.471	0.921	0.108	32.316	0.944	0.077		
(3)	field	full	w/o decomp	16	31.707	0.921	0.106	31.204	0.943	0.071		
(4)	field	full	full	8	32.005	0.929	0.093	34.159	0.962	0.053		
(4)	field	full	full	16	31.996	0.929	<u>0.092</u>	<u>34.716</u>	<u>0.965</u>	0.051		
(5)	field	X	full	16	-	-	-	-	-	-		
(6)	field	w/o <i>z</i>	full	16	31.603	0.921	0.107	33.408	0.955	0.067		
(7)	field	w/o δs	full	16	32.094	<u>0.929</u>	<u>0.092</u>	34.504	0.964	<u>0.052</u>		
FreeGave	field	full	full	32	32.287	0.930	0.092	35.019	0.966	0.051		

 Table 9. Complete ablation study results on both Dynamic Object Dataset and Dynamic Indoor Scene Dataset

-			Fallin	g Ball			Bat						
Methods	II	nterpolatio	n	E	xtrapolati	on	II	nterpolatio	on	E	xtrapolati	on	
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	
T-NeRF [51]	14.921	0.782	0.326	15.418	0.793	0.308	13.070	0.836	0.234	13.897	0.834	0.230	
D-NeRF [51]	15.548	0.665	0.435	15.116	0.644	0.427	14.087	0.845	0.212	15.406	0.887	0.175	
TiNeuVox [15]	35.458	0.974	0.052	20.242	0.959	0.067	16.080	0.908	0.108	16.952	0.930	0.115	
T-NeRF _{PINN}	17.687	0.775	0.368	17.857	0.829	0.265	16.412	0.903	0.197	18.983	0.930	0.132	
HexPlane _{PINN}	32.144	0.965	0.065	20.762	0.951	0.081	23.399	0.958	0.057	21.144	0.951	0.064	
NVFi [30]	35.826	0.978	0.041	31.369	0.978	0.041	23.325	<u>0.964</u>	0.046	25.015	0.968	0.042	
DefGS [75]	37.535	0.995	0.009	20.442	0.976	0.033	<u>38.750</u>	0.997	<u>0.004</u>	17.063	0.936	0.072	
DefGS _{nvfi}	<u>38.606</u>	0.996	0.010	<u>24.873</u>	0.985	0.015	38.075	0.997	0.004	28.950	0.980	0.015	
FreeGave (Ours)	42.369	0.998	0.003	38.321	0.997	0.003	39.662	0.997	0.002	27.235	0.982	0.013	
			Fa	an					Teles	cope			
Methods	I	nterpolatic	n	Е	xtrapolati	on	Iı	nterpolatio	on	Extrapolation			
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	
T-NeRF [51]	8.001	0.308	0.646	8.494	0.392	0.593	13.031	0.615	0.472	13.892	0.670	0.417	
D-NeRF [51]	7.915	0.262	0.690	8.624	0.370	0.623	13.295	0.609	0.469	14.967	0.700	0.385	
TiNeuVox [15]	24.088	0.930	0.104	20.932	0.935	0.078	31.666	0.982	0.041	20.456	0.921	0.067	
T-NeRF _{PINN}	9.233	0.541	0.508	9.828	0.606	0.443	14.293	0.739	0.366	15.752	0.804	0.298	
HexPlane _{PINN}	22.822	0.921	0.079	19.724	0.919	0.080	25.381	0.948	0.066	23.165	0.932	0.074	
NVFi [30]	25.213	0.948	0.049	27.172	0.963	0.037	26.487	0.959	0.048	27.101	0.963	0.046	
DefGS [75]	35.858	0.985	<u>0.017</u>	20.932	0.948	0.038	37.502	<u>0.996</u>	<u>0.003</u>	20.684	0.927	0.048	
DefGS _{nvfi}	35.217	0.984	0.019	26.648	<u>0.972</u>	<u>0.023</u>	<u>37.568</u>	<u>0.996</u>	0.003	<u>34.096</u>	<u>0.994</u>	0.005	
FreeGave (Ours)	<u>35.767</u>	0.985	0.013	32.393	0.986	0.009	40.332	0.998	0.002	40.401	0.998	0.002	
			Sh	ark			Whale						
Methods	I	nterpolatic	n	E	xtrapolati	on	Iı	nterpolatio	on	E	xtrapolati	on	
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	
T-NeRF [51]	13.813	0.853	0.223	15.325	0.882	0.193	16.141	0.860	0.212	15.880	0.860	0.203	
D-NeRF [51]	17.727	0.903	0.150	19.078	0.936	0.092	16.373	0.898	0.154	14.771	0.883	0.171	
TiNeuVox [15]	23.178	0.971	0.059	19.463	0.950	0.050	37.455	0.994	0.016	19.624	0.943	0.063	
T-NeRF _{PINN}	17.315	0.878	0.177	18.739	0.921	0.115	16.778	0.927	0.141	15.974	0.919	0.127	
HexPlane _{PINN}	28.874	0.976	0.040	22.330	0.961	0.047	29.634	0.981	0.035	21.391	0.961	0.053	
NVFi [30]	32.072	0.984	0.024	28.874	0.982	0.021	31.240	0.986	0.025	26.032	0.978	0.029	
DefGS [75]	<u>37.802</u>	<u>0.994</u>	<u>0.006</u>	19.924	0.957	0.034	39.740	0.997	<u>0.004</u>	20.048	0.951	0.046	
DefGS _{nvfi}	37.327	<u>0.994</u>	0.006	29.240	0.987	0.007	37.101	<u>0.996</u>	0.005	<u>28.686</u>	<u>0.986</u>	0.012	
FreeGave (Ours)	40.211	0.996	0.004	29.236	0.990	0.005	<u>38.015</u>	0.997	0.003	28.950	0.989	0.009	

Table 10. Per-scene quantitative results on Dynamic Object Dataset.

			Gnome	House			Chessboard						
Methods	I	nterpolatio	n	E	xtrapolatic	n	I	nterpolatio	n	E	Extrapolatio	on	
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	
T-NeRF [51]	26.094	0.716	0.383	23.485	0.643	0.419	25.517	0.796	0.294	20.228	0.708	0.365	
D-NeRF [51]	27.000	0.745	0.319	21.714	0.641	0.367	24.852	0.774	0.308	19.455	0.675	0.384	
TiNeuVox [15]	30.646	0.831	0.253	21.418	0.699	0.326	33.001	0.917	0.177	19.718	0.765	0.310	
T-NeRF _{PINN}	15.008	0.375	0.668	16.200	0.409	0.651	16.549	0.457	0.621	17.197	0.472	0.618	
HexPlane _{PINN}	23.764	0.658	0.510	22.867	0.658	0.510	24.605	0.778	0.412	21.518	0.748	0.428	
NSFF [32]	31.418	0.821	0.294	25.892	0.750	0.327	32.514	0.810	0.201	21.501	0.805	0.282	
NVFi [30]	30.667	0.824	0.277	30.408	0.826	0.273	30.394	0.888	0.215	27.840	0.872	0.219	
DefGS [75]	32.041	0.918	0.132	21.703	0.775	0.207	27.355	0.912	0.147	20.032	0.808	0.218	
$DefGS_{nvfi}$	32.881	<u>0.919</u>	0.132	<u>33.630</u>	<u>0.953</u>	0.077	26.200	0.907	0.156	<u>26.730</u>	<u>0.917</u>	<u>0.110</u>	
FreeGave (Ours)	32.791	0.923	0.103	36.458	0.963	0.062	35.388	0.962	0.061	35.016	0.970	0.044	
			Fac	tory					Dining	g Table			
Methods	I	nterpolatio	Fac n	tory E	xtrapolatic	n	I	nterpolatio	Dining n	g Table E	Extrapolatio	on	
Methods	I PSNR↑	nterpolatio SSIM↑	Fac n LPIPS↓	tory E PSNR↑	xtrapolatic SSIM↑	n LPIPS↓	I: PSNR↑	nterpolatio SSIM↑	Dining n LPIPS↓	g Table E PSNR↑	Extrapolatio SSIM↑	on LPIPS↓	
Methods T-NeRF [51]	I PSNR↑ 26.467	nterpolatio SSIM↑ 0.741	Fac n LPIPS↓ 0.328	tory	xtrapolatic SSIM↑ 0.722	n LPIPS↓ 0.344	I PSNR↑ 21.699	nterpolatio SSIM↑ 0.716	Dining n LPIPS↓ 0.338	Table E PSNR↑ 20.977	Extrapolatio SSIM↑ 0.725	$\frac{\text{DN}}{\text{LPIPS}\downarrow}$ 0.324	
Methods T-NeRF [51] D-NeRF [51]	I PSNR↑ 26.467 28.818	nterpolatio SSIM↑ 0.741 0.818	Fac n LPIPS↓ 0.328 0.252	tory	Extrapolatic SSIM↑ 0.722 0.746	n LPIPS↓ 0.344 0.303	I PSNR↑ 21.699 20.851	nterpolatio SSIM↑ 0.716 0.725	Dining n LPIPS↓ 0.338 0.319	Table <u> </u>	Extrapolation SSIM↑ 0.725 0.705	on LPIPS↓ 0.324 0.341	
Methods T-NeRF [51] D-NeRF [51] TiNeuVox [15]	I PSNR↑ 26.467 28.818 32.684	nterpolatio SSIM↑ 0.741 0.818 0.909	Fac n LPIPS↓ 0.328 0.252 0.148	tory PSNR↑ 24.276 22.959 22.622	xtrapolatic SSIM↑ 0.722 0.746 0.810	n LPIPS↓ 0.344 0.303 0.229	I: PSNR↑ 21.699 20.851 23.596	nterpolatio SSIM↑ 0.716 0.725 0.798	Dining n LPIPS↓ 0.338 0.319 0.274	Table <u>FSNR↑</u> 20.977 19.035 20.357	Extrapolatio SSIM↑ 0.725 0.705 0.804	on LPIPS↓ 0.324 0.341 0.258	
Methods T-NeRF [51] D-NeRF [51] TiNeuVox [15] T-NeRF _{PINN}	I PSNR↑ 26.467 28.818 32.684 16.634	nterpolatio SSIM↑ 0.741 0.818 0.909 0.446	Fac n LPIPS↓ 0.328 0.252 0.148 0.624	tory PSNR↑ 24.276 22.959 22.622 17.546	xtrapolatic SSIM↑ 0.722 0.746 0.810 0.480	n LPIPS↓ 0.344 0.303 0.229 0.609	I: PSNR↑ 21.699 20.851 23.596 16.807	nterpolatio SSIM↑ 0.716 0.725 0.798 0.486	Dining n LPIPS↓ 0.338 0.319 0.274 0.640	Table FSNR↑ 20.977 19.035 20.357 18.215	Extrapolation SSIM↑ 0.725 0.705 0.804 0.548	0.324 0.324 0.341 0.258 0.595	
Methods T-NeRF [51] D-NeRF [51] TiNeuVox [15] T-NeRF _{PINN} HexPlane _{PINN}	I PSNR↑ 26.467 28.818 32.684 16.634 27.200	nterpolatio SSIM↑ 0.741 0.818 0.909 0.446 0.826	Fac n LPIPS↓ 0.328 0.252 0.148 0.624 0.283	tory PSNR↑ 24.276 22.959 22.622 17.546 24.998	xtrapolatic SSIM↑ 0.722 0.746 0.810 0.480 0.792	m LPIPS↓ 0.344 0.303 0.229 0.609 0.312	I PSNR↑ 21.699 20.851 23.596 16.807 25.291	nterpolatio SSIM↑ 0.716 0.725 0.798 0.486 0.788	Dining n LPIPS↓ 0.338 0.319 0.274 0.640 0.350	Table PSNR↑ 20.977 19.035 20.357 18.215 22.979	Extrapolation SSIM↑ 0.725 0.705 0.804 0.548 0.771	0.324 0.324 0.341 0.258 0.595 0.355	
Methods T-NeRF [51] D-NeRF [51] TiNeuVox [15] T-NeRF _{PINN} HexPlane _{PINN} NSFF [32]	I PSNR↑ 26.467 28.818 32.684 16.634 27.200 33.975	nterpolatio SSIM↑ 0.741 0.818 0.909 0.446 0.826 0.919	Fac n LPIPS↓ 0.328 0.252 0.148 0.624 0.283 0.152	tory PSNR↑ 24.276 22.959 22.622 17.546 24.998 26.647	xtrapolatic SSIM↑ 0.722 0.746 0.810 0.480 0.792 0.855	n LPIPS↓ 0.344 0.303 0.229 0.609 0.312 0.196	I PSNR↑ 21.699 20.851 23.596 16.807 25.291 19.552	nterpolatio SSIM↑ 0.716 0.725 0.798 0.486 0.788 0.665	Dining n LPIPS↓ 0.338 0.319 0.274 0.640 0.350 0.464	Table FSNR↑ 20.977 19.035 20.357 18.215 22.979 22.612	Extrapolatic SSIM↑ 0.725 0.705 0.804 0.548 0.771 0.770	001 LPIPS↓ 0.324 0.341 0.258 0.595 0.355 0.351	
Methods T-NeRF [51] D-NeRF [51] TiNeuVox [15] T-NeRF _{PINN} HexPlane _{PINN} NSFF [32] NVFi [30]	I PSNR↑ 26.467 28.818 32.684 16.634 27.200 33.975 32.460	nterpolatio SSIM↑ 0.741 0.818 0.909 0.446 0.826 <u>0.919</u> 0.912	Fac n LPIPS↓ 0.328 0.252 0.148 0.624 0.283 0.152 0.151	tory PSNR↑ 24.276 22.959 22.622 17.546 24.998 26.647 31.719	xtrapolatic SSIM↑ 0.722 0.746 0.810 0.480 0.792 0.855 0.908	m LPIPS↓ 0.344 0.303 0.229 0.609 0.312 0.196 0.154	I PSNR↑ 21.699 20.851 23.596 16.807 25.291 19.552 29.179	nterpolatio SSIM↑ 0.716 0.725 0.798 0.486 0.788 0.665 0.885	Dining n LPIPS↓ 0.338 0.319 0.274 0.640 0.350 0.464 0.199	3 Table PSNR↑ 20.977 19.035 20.357 18.215 22.979 22.612 29.011	Extrapolatic SSIM↑ 0.725 0.705 0.804 0.548 0.771 0.770 0.898	DN LPIPS↓ 0.324 0.341 0.258 0.595 0.355 0.351 0.171	
Methods T-NeRF [51] D-NeRF [51] TiNeuVox [15] T-NeRF _{PINN} HexPlane _{PINN} NSFF [32] NVFi [30] DefGS [75]	I PSNR↑ 26.467 28.818 32.684 16.634 27.200 33.975 32.460 33.629	nterpolatio SSIM↑ 0.741 0.818 0.909 0.446 0.826 <u>0.919</u> 0.912 0.943	Fac n LPIPS↓ 0.328 0.252 0.148 0.624 0.283 0.152 0.151 0.096	tory PSNR↑ 24.276 22.959 22.622 17.546 24.998 26.647 31.719 22.820	xtrapolatic SSIM↑ 0.722 0.746 0.810 0.480 0.792 0.855 0.908 0.839	m LPIPS↓ 0.344 0.303 0.229 0.609 0.312 0.196 0.154 0.169	II PSNR↑ 21.699 20.851 23.596 16.807 25.291 19.552 29.179 27.680	nterpolatio SSIM↑ 0.716 0.725 0.798 0.486 0.788 0.665 0.885 0.890	Dining n LPIPS↓ 0.338 0.319 0.274 0.640 0.350 0.464 0.199 <u>0.145</u>	3 Table PSNR↑ 20.977 19.035 20.357 18.215 22.979 22.612 29.011 20.965	Extrapolation SSIM↑ 0.725 0.705 0.804 0.548 0.771 0.770 0.898 0.855	0.324 0.324 0.341 0.258 0.355 0.355 0.355 0.351 0.171 0.157	
Methods T-NeRF [51] D-NeRF [51] TiNeuVox [15] T-NeRF _{PINN} HexPlane _{PINN} NSFF [32] NVFi [30] DefGS [75] DefGS _{nvfi}	I PSNR↑ 26.467 28.818 32.684 16.634 27.200 33.975 32.460 33.629 <u>33.643</u>	nterpolatio SSIM↑ 0.741 0.818 0.909 0.446 0.826 0.919 0.912 0.943 0.943	Fac n LPIPS↓ 0.328 0.252 0.148 0.624 0.283 0.152 0.151 <u>0.096</u> 0.097	tory PSNR↑ 24.276 22.959 22.622 17.546 24.998 26.647 31.719 22.820 <u>33.049</u>	xtrapolatic SSIM↑ 0.722 0.746 0.810 0.480 0.792 0.855 0.908 0.839 0.954	n LPIPS↓ 0.344 0.303 0.229 0.609 0.312 0.196 0.154 0.169 0.062	E PSNR↑ 21.699 20.851 23.596 16.807 25.291 19.552 29.179 27.680 <u>27.957</u>	nterpolatio SSIM↑ 0.716 0.725 0.798 0.486 0.788 0.665 0.885 0.890 0.891	Dining n LPIPS↓ 0.338 0.319 0.274 0.640 0.350 0.464 0.199 <u>0.145</u> <u>0.145</u>	s Table PSNR↑ 20.977 19.035 20.357 18.215 22.979 22.612 29.011 20.965 30.975	Extrapolation SSIM↑ 0.725 0.705 0.804 0.548 0.771 0.770 0.898 0.855 0.955	0.324 0.324 0.324 0.258 0.355 0.355 0.355 0.351 0.171 0.157 0.060	

Table 11. Per-scene quantitative results on Dynamic Indoor Scene Dataset.

Table 12. Per-scene quantitative results on FreeGave-GoPro Dataset.

	Pen & Tape 1									Pen & Tape 2					
Methods	I	nterpolatic	n	E	Extrapolatio	n	I	nterpolatio	n	E	extrapolatio	on			
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓			
TiNeuVox [15]	19.368	0.758	0.304	20.127	0.795	0.289	19.594	0.732	0.334	20.514	0.779	0.296			
NVFi [30]	21.397	0.816	0.243	23.869	0.824	0.258	22.31	0.813	0.245	23.574	0.806	0.269			
DefGS [75]	29.598	0.933	0.080	20.284	0.865	0.163	27.587	0.909	0.098	20.674	0.861	0.169			
DefGS _{nvfi}	29.571	0.932	0.081	26.289	0.922	0.108	27.456	0.909	0.099	<u>27.124</u>	0.915	0.120			
FreeGave (Ours)	29.412	0.927	0.087	29.001	0.936	0.090	27.498	0.907	0.098	28.842	0.925	0.107			
	Box								Wrist	Rest					
Methods	Ι	nterpolatic	n	E	Extrapolatio	n	I	nterpolatio	n	Extrapolation					
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓			
TiNeuVox [15]	19.464	0.726	0.318	23.958	0.807	0.247	19.133	0.751	0.315	18.204	0.727	0.342			
NVFi [30]	19.391	0.777	0.282	24.867	0.806	0.263	13.235	0.570	0.490	19.222	0.683	0.431			
DefGS [75]	28.448	<u>0.918</u>	0.087	25.656	0.904	0.117	28.178	0.923	0.100	18.834	0.809	0.220			
$DefGS_{nvfi}$	29.571	0.932	0.081	26.289	0.922	0.108	27.938	0.921	0.102	<u>22.741</u>	0.856	0.170			
FreeGave (Ours)	28.339	0.916	0.088	30.964	0.935	0.084	28.708	0.925	0.098	24.093	0.867	0.159			
			Han	nmer			Collision								
Methods	Ι	nterpolatic	m	E	Extrapolatio	on	I	nterpolatio	n	Extrapolation					
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓			
TiNeuVox [15]	18.75	0.733	0.324	22.638	0.710	0.251	17.848	0.741	0.316	18.158	0.743	0.329			
NVFi [30]	22.817	0.817	0.235	25.526	0.830	0.241	14.530	0.638	0.438	19.422	0.717	0.391			
DefGS [75]	28.141	<u>0.916</u>	0.089	23.995	0.899	0.123	28.493	0.923	0.089	18.619	0.808	0.228			
$DefGS_{nvfi}$	28.478	0.917	0.088	<u>29.392</u>	0.928	0.095	28.125	0.923	0.092	23.512	0.871	<u>0.157</u>			
FreeGave (Ours)	28.314	0.917	0.089	30.090	0.932	0.091	28.434	0.925	0.088	25.571	0.886	0.139			

Robot Task Robot Methods Interpolation Extrapolation Interpolation Extrapolation SSIM↑ **PSNR**↑ **PSNR**↑ **PSNR**↑ LPIPS↓ SSIM↑ LPIPS SSIM↑ LPIPS **PSNR**↑ SSIM↑ LPIPS↓ TiNeuVox [15] 32.079 0.975 17.287 34.672 0.984 0.047 21.078 0.063 0.861 0.162 0.906 0.097 0.945 NVFi [30] 28.740 0.962 0.065 18.518 0.875 0.125 30.906 0.971 0.051 26.130 0.067 DefGS [75] 34.713 0.989 0.015 15.793 0.872 0.129 37.218 0.994 0.006 19.193 0.911 0.079 DefGS_nvfi 33.924 0.987 0.017 17.965 0.892 0.092 37.640 0.994 0.006 26.566 0.962 0.023 33.298 FreeGave (Ours) 0.986 0.017 19.361 0.901 0.076 37.538 0.994 0.006 25.526 0.954 0.029 Wheel Cloth Methods Interpolation Extrapolation Extrapolation Interpolation **PSNR**↑ **SSIM**↑ LPIPS↓ **PSNR**↑ **SSIM**↑ **PSNR**↑ **SSIM**↑ **PSNR**↑ **SSIM**↑ LPIPS↓ LPIPS↓ LPIPS↓ TiNeuVox [15] 32.406 0.981 0.052 18.476 0.885 0.117 28.544 0.946 0.058 22.599 0.880 0.079 NVFi [30] 27.309 0.951 0.075 18.904 0.894 0.116 26.225 0.935 0.056 12.990 0.790 0.153 34.072 0.991 0.010 16.687 0.971 0.028 25.840 DefGS [75] 0.880 0.115 30.290 0.945 0.034 22.393 DefGS_{nvfi} 32.547 0.986 0.012 26.655 0.964 0.023 28.537 0.968 0.029 0.914 0.063 0.987 27.934 0.966 30.350 0.971 0.028 30.926 0.972 0.022 FreeGave (Ours) 32.604 0.011 0.026 Pendulums Spring Interpolation Methods Extrapolation Interpolation Extrapolation LPIPS↓ **PSNR**↑ SSIM↑ LPIPS↓ **PSNR**↑ SSIM↑ LPIPS↓ **PSNR**↑ SSIM↑ LPIPS↓ **PSNR**↑ **SSIM**↑ 0.990 TiNeuVox [15] 32.731 0.022 20.448 0.891 0.073 36.093 0.991 0.028 22.551 0.905 0.084 NVFi [30] 30.315 0.982 0.020 15.575 0.853 0.107 29.691 0.970 0.046 16.922 0.844 0.146 DefGS [75] 35.684 0.995 0.004 19.286 0.905 0.060 39.392 0.997 0.003 18.428 0.889 0.082 DefGS_{nvfi} 34.606 0.995 0.004 23.648 0.953 0.024 37.973 0.996 0.004 19.154 0.903 0.075 0.997 0.003 FreeGave (Ours) 38.465 0.003 25.501 0.959 0.015 38.992 0.997 30.696 0.985 0.009

Table 13. Per-scene quantitative results on ParticleNeRF Dataset.

Figure 7. Qualitative results for future frame extrapolation on Dynamic Object Dataset.

Figure 8. Qualitative results for future frame extrapolation on Dynamic Object Dataset.

Figure 9. Qualitative results for future frame extrapolation on ParticleNeRF Dataset.

Figure 10. Qualitative results for future frame extrapolation on ParticleNeRF Dataset.

Figure 11. Qualitative results for future frame extrapolation on Dynamic Indoor Scene Dataset.

Figure 12. Qualitative results for future frame extrapolation on "Pen & Tape 2" of FreeGave-GoPro Dataset.

Figure 13. Qualitative results for future frame extrapolation on "Box" of FreeGave-GoPro Dataset.

Figure 14. Qualitative results for future frame extrapolation on "Hammer" of FreeGave-GoPro Dataset.

Figure 15. Qualitative results for future frame extrapolation on "Collision" of FreeGave-GoPro Dataset.

Figure 16. Qualitative results for unsupervised motion segmentation on "Chessboard" of Dynamic Indoor Scene Dataset.

Figure 17. Qualitative results for unsupervised motion segmentation on "Gnome House" of Dynamic Indoor Scene Dataset.

Figure 18. Qualitative results for unsupervised motion segmentation on "Dining Table" of Dynamic Indoor Scene Dataset.

Figure 19. Qualitative results for unsupervised motion segmentation on "Factory" of Dynamic Indoor Scene Dataset.