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1. More Implementation Details
Robust Partial Feature Extraction. We document more
implementation details about GCE-Pose. For feature extrac-
tion, we employ DINOv2 [48] to process images cropped to
224 × 224 resolution using the 𝑑𝑖𝑛𝑜𝑣2 𝑣𝑖𝑡𝑠14 model vari-
ant. Point cloud features are extracted via PointNet++ [51]
with multi-scale grouping, generating per-point features for
partial observation and shape reconstruction tasks. Fol-
lowing AG-Pose [41], we utilize 96 key points. For the
object-aware chamfer distance, we set the outlier threshold
𝜏1 = 0.1 in Eq. (1) and the keypoint diversity regularization
threshold 𝜏2 = 0.2 in Eq. (3).

Semantic Shape Reconstruction. For each model 𝑘 , we
initialize prototypes 𝑐𝑘 ∈ R𝑁×3 using the K-Means++ algo-
rithm [1]. The deformation field 𝑣𝑘 applied to prototype 𝑐𝑘
uses point-wise parameterization with vectors of dimension
𝐷 × (𝑁 × 3). To balance complexity and efficiency [43], we
set the number of basis vectors 𝐷 to 5. The deformation net-
work D𝑘 processes centered partial point clouds to produce
shape parameters 𝑎 ∈ R5, corresponding to coordinates in
the linear space defined in Eq. (4). Similarly, the scale net-
work S𝑘 outputs scaling parameters 𝑠 ∈ R3 for anisometric
scaling along all axes. Both networks share a PointNet++-
based [51] encoder for feature extraction. Training proceeds
in two stages:
• First, we train the deep linear shape model using ground

truth point clouds sampled from object meshes via far-
thest point sampling (FPS). Following [43], we employ
curriculum learning by optimizing the prototype 𝑐𝑘 first,
then gradually increasing the deformation field 𝑣𝑘 basis
vector dimensions. We train for 1000 epochs using the
Adam optimizer with a 1𝑒−3 learning rate.

• Second, we augment centered partial observation inputs
with random rotations (0° to 20° on all axes with 0.5
probability). To balance the parameter loss Lpara defined
in Eq. (6), we set 𝜆1 = 1.0 and 𝜆2 = 0.1. For the
reconstruction loss in Eq. (7), we use 𝜆CD = 1.0 and
𝜆para = 0.1. Training runs for 30 epochs using Adam with
learning rate 1𝑒−3.
We use Pytorch3D to position 8 virtual perspective cam-

eras in a cube configuration around the normalized target ob-
ject for semantic prototype construction. We also position a
point light to enhance the surface detail and generate realis-
tic rendering. We employ the DINOv2 pre-trained model for
feature extraction to generate pixel-aligned feature descrip-
tors. We gathered 200 nearest neighbors for each sampled

point using the KNN algorithm described in Eq. (9) to ag-
gregate semantic features from the dense semantic point to
our deep linear shape reconstruction.

Pose Size Estimator. To train the pose estimation net-
work, we balance the loss function defined in Eq. (18) with
hyperparameters: 𝜆1 = 2.0, 𝜆2 = 2.0, 𝜆3 = 15.0, 𝜆4 = 0.3,
𝜆5 = 0.3. We train the network using ADAM optimizer with
CyclicLR scheduler in triangular2 mode with base learning
rate 𝑙𝑟 = 2𝑒−5 and max learning rate 𝑙𝑟 = 5𝑒−4. To deal
with the symmetry issue, we follow [61] to transform the
rotation to canonical.
Instance-Segmentation. We follow the previous litera-
ture [8, 38, 39, 41, 72] of category-level pose estimation
for fair comparisons, using the same segmentation mask
as the baseline methods. Specifically, the provided Mask-
RCNN segmentation results are used in REAL275, and the
GT segmentation mask is used for testing HouseCat6D.
Training process details. The training process of SSR
module is in two stages, where the first stage is used to
generate the shape parameters as supervision signal for the
second stage, in the second stage, the network is trained
with noisy sensor point cloud to make shape reconstruction
network robust against noise. The pose estimation part is
trained independently after both of these stages.

2. Evaluation on Instance Reconstruction
We evaluate our instance reconstruction with chamfer dis-
tance (CD) on the HouseCat6D Dataset. We measure the
Chamfer distance between our reconstructed pointclouds
and the ground-truth pointclouds sampled from the CAD
model in NOCS space. We represent the CD metric with
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where 𝑀 and �̂� denote the reconstructed point cloud and
the ground-truth point cloud sampled from the CAD model,
respectively. The term ∥·∥2 represents the squared Euclidean
distance, and min computes the nearest neighbor distance for
each point in one point cloud to the other.

As shown in Tab. 4, we achieve 2.39×10−3 mean chamfer
distance of our reconstruction.

To evaluate the reconstruction performance of our
method, we compare the reconstructed shape with the
groundtruth shape using the Chamfer Distance. We report
the per-category shape reconstruction result in Tab. 4.



Category Bottle Box Can Cup Remote Teapot Cutlery Glass Tube Shoe Average
Chamfer Distance 1.59 7.79 3.45 1.77 1.18 2.79 0.46 1.93 1.26 1.70 2.39

Table 4. Reconstruction performance for the categories in HouseCat6D dataset [29]. Evaluated with Chamfer Distance metric
(
10−3

)
.
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Figure 6. Visualization of feature point cloud using PCA. Upper row: Key
feature. Bottom row: Value feature. The zoom-in visualizations indicate
embedding changes in the key feature around symmetric areas, which are
negligible for the value feature.

Keypoint 𝜆2 𝜆3 5◦2cm 10◦2cm IoU75
96 2.0 15.0 24.8 55.4 60.6
128 2.0 15.0 24.2 52.9 57.8
96 0.5 15.0 23.5 54.6 58.9
96 2.0 3.0 23.8 53.4 59.7

Table 5. Hyperparameter comparison, the default setting is in bold.

3. More Ablation Studies
In our Global Context Enhancement Feature Fusion module,
we demonstrate the best result using the DINO value feature
from partial observation and the DINO key feature from se-
mantic global reconstruction. For symmetric objects, e.g.,
“glass”, as shown in Figure 10, the value features are sym-
metric and ambiguous around the rotational axis, while the
key features are embedded with positional code and thus dis-
tinctive, which is helpful when handling symmetric cases.
We also report the quantitative results for “glass” in Tab. 6,
showing higher performance when using key features.

Experimental results of the full benchmark on the effi-
cacy of global context feature fusion in Tab. 7 show that our
feature fusion strategy can enhance pose estimation perfor-
mance effectively.

We additionally conduct experiments on the robustness
to hyper-parameter variation. Tab. 5 shows the results of
hyper-parameter testing, including the number of key points
and the hyper-parameters of the loss function defined in Eq.
(18). The results are slightly different but still stable.

4. More Results and Visualization
Intra-class semantic variation. Our method extracts se-
mantic features from the powerful pre-trained large founda-

Metrics Value feature Key feature (Ours) Difference
5◦2cm 59.16 64.86 5.70
5◦5cm 62.50 66.11 3.61

10◦2cm 86.29 92.30 6.01
10◦5cm 91.72 94.49 2.77

Table 6. Quantitative comparison for symmetric category “glass”.

tional model DINOv2, which is capable of handling intra-
class semantic variation effectively as shown in Fig. 7. On
the other hand, our SSR module is designed to aggregate the
categorical semantics into the reconstructed instances effec-
tively through the learned deep linear shapes. As shown in
Fig 5 (B) of the main text, with our SSR module, the seman-
tics are consistent across the instances with shape variance
demonstrated in Fig. 7.

camera

Figure 7. Semantics consistency for the ”camera” class despite
geometry changes in the lens area.

We visualize more results of 3D bounding box prediction
of our GCE-Pose for the HouseCat6d dataset in Fig. 9 and
NOCS dataset in Fig. 8. We choose four images per scene
in the test set and indicate the groundtruth results in green
and the prediction in red.

To demonstrate the effectiveness of our method in im-
proving pose estimation and NOCS coordinates prediction,
we provide further visualization of 3D bounding box pre-
diction and evaluate NOCS errors on key points. Fig. 10
presents a qualitative comparison of AG-Pose [41] (DINO)
and our proposed method on the Housecat6D dataset. The
visualizations display the NOCS error map overlaid on the
images, where red dots indicate higher errors and green
dots indicate lower errors. Our qualitative results show that
our method achieves high precision in predicting NOCS co-
ordinates, which is essential for accurate pose estimation.
Additionally, we have included videos in the attached file
that showcase the complete results across the full sequences
of the HouseCat6D dataset.

Furthermore, we conducted experiments on HouseCat6D
using the state-of-the-art shape-prior-based method, Seld-
DPDN [38]. Appendix 3 highlights the quantitative results,
demonstrating the advantages of incorporating shape and



Method Ins. recon. Mean shape Geo. Sem. 5◦2cm 5◦5cm 10◦2cm 10◦5cm IoU50 IoU75
(0) AG-Pose (DINO) × × × × 21.34 22.27 52.00 55.12 76.79 56.07
(1) Ours (Only Geo.) ✓ × ✓ × 22.73 24.28 52.83 56.51 78.59 58.17
(2) Ours (Only Sem.) × ✓ × ✓ 22.16 23.65 52.44 57.31 78.10 55.07
(3) Ours (Mean shape, Geo. & Sem.) × ✓ ✓ ✓ 23.37 24.24 53.85 56.83 79.27 60.46
(4) GCE-Pose (full pipeline) ✓ ✓ ✓ ✓ 24.85 25.73 55.44 58.43 79.15 60.61

Table 7. Ablation study on different global priors. Ins. recon: instance shape reconstruction as the prior; Mean shape: mean shape of the
categories as the prior; Geo.: geometric features from the global prior; Sem.: semantic features for the global prior.

Dataset Method Shape Prior Semantic Prior 5◦2cm 5◦5cm 10◦2cm 10◦5cm IoU50 IoU75

HouseCat6D Self-DPDN [38] ✓ 6.4 6.9 22.2 25.8 56.2 26.0
GCE-Pose (Ours) ✓ ✓ 24.8 25.7 55.4 58.4 79.2 60.6

Table 8. Quantitative comparison of category-level object pose estimation with shape-prior on the HouseCat6D dataset [29].

semantic priors for category-level object pose estimation.
We showcase semantic prototype and their corresponding

semantic transfers with more classes in the HouseCat6D
dataset, as shown in Fig. 11. The classes, listed from top
to bottom, include box, bottle, glass, teapot, cup, shoe, can,
tube, cutlery, and remote.
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Figure 8. NOCS dataset bounding box visualization. Green indicates GT, and red indicates prediction results.
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Figure 9. HouseCat6D bounding box visualization. Green indicates GT, and red indicates prediction results.

AG-Pose
(DINO)

Ours

0.2

0.0

0.1

0.15

0.05

NOCS error

Figure 10. Visualization of HouseCat6D Keypoint NOCS Error. Red indicates a high error; green indicates a low error.
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Figure 11. Visualization of Semantic prototypes and in-class semantic transfer results in HouseCat6D dataset.
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