
Appendix

A. Implementation Details
In this section, we provide a comprehensive overview

of the implementation details for the GO-N3RDet model
architecture and its training process. Specifically, we de-
tail the two main branches of our model: the detection
branch, which focuses on 3D object detection, and the
NeRF branch, which enhances scene representation and
geometry understanding. Our elaboration of the training
details also includes hyper-parameter settings and dataset-
specific setups, to offer a thorough understanding of our
implementation.

A.1. Detection Branch

In the Detection Branch, 3D voxel features are con-
structed by aggregating multi-view image features. These
voxel features are then processed through a 3D convolu-
tional neural network [6] to extract spatial and semantic in-
formation. Finally, the refined voxel features are passed into
a voxel-based detection head, which predicts 3D bounding
boxes and object categories.

Feature Volume. To construct the feature volume, multi-
scale features are first extracted from input images using
a ResNet [4] backbone. These features are then merged
across levels through a Feature Pyramid Network (FPN),
resulting in a 256-channel output, which is subsequently
used as input for voxel generation. Our detection network
supports 10 to 200 input views, as demonstrated in Tab. 1,
where experiments show the effect of varying view counts
on detection accuracy.

The multi-view features are organized into a 3D
voxel grid with dimensions [40, 40, 16], voxel size
[0.16m, 0.16m, 0.2m], and spatial bounds ranging from
[−2.7m,−2.7m,−0.78m] to [3.7m, 3.7m, 1.78m]. Input
images are resized to (480, 360) before feature extraction.
For each voxel, features are aggregated by projecting its
center onto the multi-view images and applying average
pooling across views, ensuring consistency in voxel repre-
sentation. This voxel construction method, which originates
from NeRF-Det [8] and ImVoxelNet [6], serves as the foun-
dation for our approach. Building upon this baseline, our
GO-N3RDet introduces the PEOM to further enhance fea-
ture representation and improve detection performance.

PEOM Architecture. The PEOM module improves voxel
feature alignment and spatial representation by offsetting
voxel centers and integrating image features, which en-
hances 3D geometric scene perception and helps mitigate
the impact of camera calibration errors on voxel field qual-
ity.

Initially, each voxel center is projected into 2D image
space, where its position is refined through learned offsets

(constrained within [−10, 10] pixels). The adjusted posi-
tion retrieves the corresponding image feature, which is
then backprojected into the voxel grid to replace the orig-
inal voxel center with a refined point. A depth filter en-
sures consistency with the voxel grid resolution, resulting
in a spatially calibrated 3D feature volume.

In the feature fusion phase, multi-layer perceptrons
(MLPs) transform these backprojected features and 3D po-
sitional data into enriched, position-sensitive representa-
tions. Max pooling is then applied to aggregate these fea-
tures, creating voxel representations that are both highly
salient and optimized for downstream tasks.

Through the combined use of positional adjustments
during backprojection and spatially-aware feature fusion,
PEOM produces precise, feature-rich voxel representations
that significantly enhance the performance of 3D object de-
tection.

A.2. The NeRF branch

In the NeRF branch, we leverage NeRF [5] to predict the
opacity of each voxel, thereby enriching the voxel’s geo-
metric information with opacity-based enhancement.

For Double Importance Sampling (DIS), we sample
2,048 rays per scene, with 128 points sampled along each
ray. This sampling strategy integrates information from
both offset points and the density predicted through uniform
sampling, balancing contributions from these two sources.
Specifically, uniform sampling of 128 points is performed
within the voxel grid, and the density of these points is com-
puted within the offset voxel field produced by PEOM. Con-
currently, the NeRF model predicts densities for these same
points. These two sets of densities are then combined us-
ing equal weights for balanced integration, as described in
Eq. 15 of the main paper. The weights α = 0.5 and β = 0.5
ensure an even contribution from the offset geometry (via
PEOM) and the NeRF density predictions.

A.3. Training details

The model is implemented on the MMDetection3D [2]
framework to ensure modularity and scalability. Training
is conducted with a batch size of 1 on four NVIDIA A100
GPUs. An AdamW optimizer is used with an initial learn-
ing rate of 0.0002 and a weight decay of 0.01. A custom
parameter configuration applies a learning rate multiplier
of 0.1 specifically for the backbone parameters, while the
weight decay remains at 1.0. Gradient clipping is applied
with a maximum norm of 35 to stabilize training.

The learning rate schedule follows a MultiStepLR policy
over 14 epochs, with milestones set at epochs 13. At each
milestone, the learning rate is reduced by a factor of 0.1,
allowing for gradual decay to enhance convergence in later
stages of training.



Views Method mAP@.25 mAP@.50

10 NeRF-Det 39.4 17.2
10 GO-N3RDet 38.6 18.3
20 NeRF-Det 45.1 22.5
20 GO-N3RDet 47.9 24.2
50 NeRF-Det 48.8 25.9
50 GO-N3RDet 55.3 30.0

100 NeRF-Det 53.3 26.9
100 GO-N3RDet 57.9 32.5
150 NeRF-Det 52.9 27.6
150 GO-N3RDet 58.0 32.0
200 NeRF-Det 53.4 27.5
200 GO-N3RDet 58.6 33.7

Table 1. Ablation study on the number of views for NeRF-Det [8]
and GO-N3RDet on the ScanNet [3] dataset.

B. More on Ablation Study and Discussion
B.1. Supplementary Notes on Ablation Studies

The following provides supplementary explanations for
the experiments presented in Tables 4, 5, and 6 of the main
paper, offering additional insights into the effectiveness of
various modules and parameters in our model.

In the experiments shown in Table 4, we evaluated the
performance impact of several modules, including the Po-
sitional Information Embedded Voxel Optimization Module
(POEM) and Double Importance Sampling (DIS). For these
evaluations, POEM was applied to shift voxel centers when
assessing the impact of DIS. However, to isolate the effect
of DIS independently, we using only DIS to obtain offset
points for the NeRF branch, while maintaining the original
voxel features in the detection branch, without POEM ad-
justments. For the ablation studies on DIS and Offset Op-
timization Module (OOM), the NeRF branch was utilized
to enhance feature representation. Conversely, in the exper-
iments specifically examining POEM’s effects, the NeRF
branch was excluded to isolate POEM’s impact on voxel
optimization.

Table 5 examines the influence of opacity adjustments on
model performance. In this experiment, POEM was consis-
tently applied both with and without opacity adjustments.
Meanwhile, Table 6 evaluates the effect of varying the num-
ber of sampling points; in this setup, POEM was used only
to provide offset coordinates to DIS, without incorporating
POEM-enhanced voxel features into the detection branch.

B.2. Number of Views

Based on the experimental results in Tab. 1, our
method, GO-N3RDet, consistently outperforms the base-
line method, NeRF-Det. As the number of views increases,
GO-N3RDet achieves progressively higher detection accu-
racy in terms of both mAP@0.25 and mAP@0.50, with
a particularly notable advantage in high-view configura-

Point Num 64 128 192 256

GO-N3RDet 57.9 58.6 57.7 57.5

Table 2. Ablation study on the number of sampling points per ray
in GO-N3RDet (ScanNet [3] dataset).

Values of (α, β) (0, 1) (1, 0) (0.5, 0.5)

mAP@.50 57.9 58.2 58.6

Table 3. Effect of α and β values on mAP for GO-N3RDet (Scan-
Net [3] dataset).

tions. For instance, with 50 views, GO-N3RDet attains
an mAP@0.25 of 55.3%, exceeding NeRF-Det by 6.5%,
and an mAP@0.50 of 30.0%, surpassing NeRF-Det by
4.1%. When the number of views increases to 200, GO-
N3RDet achieves mAP@0.25 and mAP@0.50 scores of
58.6% and 33.7%, respectively, significantly outperforming
NeRF-Det’s scores of 53.4% and 27.5%. This improvement
can be attributed to GO-N3RDet’s optimized approach to
multi-view information processing, which enables effective
integration of details from different perspectives. As the
number of views grows, our method more accurately cap-
tures spatial relationships and depth information within the
scene, enhancing object localization and recognition accu-
racy. This advantage is particularly evident in high-view
configurations, where GO-N3RDet demonstrates increased
robustness by leveraging refined opacity calculations, al-
lowing for more precise extraction of geometric and textural
details across multiple views.

B.3. Number of Sample Points

In the main paper, we presented an ablation study on
different sampling methods. Here, we extend this analysis
to examine the impact of varying the number of sampling
points per ray, as shown in Tab. 2. Initially, increasing the
sampling points per ray enhances detection performance by
enabling the model to capture finer scene details, thereby
improving geometric and depth information. This improve-
ment is particularly evident when the point count increases
from 64 to 128, with mAP rising from 57.9 to 58.6. How-
ever, as the point count is further increased to 192 and 256,
detection performance begins to decline slightly. This de-
cline can be attributed to the redundancy introduced by ex-
cessive sampling, which may obscure critical global fea-
tures and hinder the model’s ability to focus on the most
relevant information. Thus, an optimal number of sampling
points strikes a balance between detailed scene capture and
efficient feature extraction, while excessive sampling may
ultimately reduce detection accuracy.



Disturbance NeRF@0.25 NeRF@0.5 Ours@0.25 Ours@0.5
None 53.3 27.4 58.6 33.7

±1◦/ ± 1 cm 53.1 27.6 58.5 34.1
±3◦/ ± 3 cm 50.6 22.5 58.7 32.9
±5◦/ ± 5 cm 46.2 18.4 55.4 31.5

±10◦/ ± 10 cm 32.1 8.7 39.5 19.3

Table 4. Performance comparison under different disturbances.

Method Image Size mAP@.25 mAP@.50

NeRF-Det (320, 240) 53.1 27.8
GO-N3RDet (320, 240) 58.2 32.6
NeRF-Det (480, 360) 53.4 27.5

GO-N3RDet (480, 360) 58.6 33.7

Table 5. Impact of image resolution on detection performance for
NeRF-Det and GO-N3RDet (ScanNet [3] dataset).

B.4. Perturbation experiment

We also introduce random perturbations to camera poses
during testing to simulate inaccurate AR/VR conditions.
The experimental results are presented in Table 4, demon-
strating the robust performance of our method under such
disturbances.

B.5. Double Importance Sample Weight

In Double Importance Sampling (DIS), α and β repre-
sent the weights assigned to two density-based sampling
strategies, determining their relative contributions to the
sampling process. The results in Tab. 3 demonstrate the
impact of different (α, β) combinations on the mAP of GO-
N3RDet.

When α = 0 and β = 1, the model achieves an mAP
of 57.9, indicating that relying solely on the β parameter
provides a reasonable performance baseline. Conversely,
when α = 1 and β = 0, the mAP improves to 58.2, sug-
gesting that α contributes more effectively to model perfor-
mance when used independently. The highest mAP, 58.6,
is achieved with a balanced combination of α = 0.5 and
β = 0.5, demonstrating that equal weighting leverages
the complementary strengths of both sampling strategies.
This balance allows the model to capture richer informa-
tion, thereby enhancing detection accuracy.

B.6. Image Size

The results in Tab. 5 demonstrate the impact of im-
age resolution on detection performance for NeRF-Det
and GO-N3RDet. Across both metrics (mAP@0.25 and
mAP@0.5), GO-N3RDet consistently outperforms NeRF-
Det at both image resolutions, highlighting the effective-
ness of our approach. At the lower resolution (320, 240),
GO-N3RDet achieves an mAP@0.25 of 58.2, significantly
surpassing NeRF-Det’s 53.1. Similarly, for mAP@0.5, GO-
N3RDet records 32.6 compared to NeRF-Det’s 27.8. When

the resolution increases to (480, 360), both methods see
slight performance improvements. GO-N3RDet reaches an
mAP@0.25 of 58.6 and an mAP@0.5 of 33.7, again out-
performing NeRF-Det, which scores 53.4 and 27.5, respec-
tively. These results suggest that while higher resolution
offers minor gains for both methods, GO-N3RDet benefits
more substantially, demonstrating its robustness and supe-
rior ability to leverage additional image details for improved
3D detection accuracy.

B.7. Extended Comparison with Recent Advances

Recent methods such as CN-RMA [7] and MVSDet [9]
have demonstrated strong performance in multi-view indoor
object detection. Therefore, we further compare our GO-
N3RDet with these approaches to highlight the advantages
of our method in this context.

Specifically, CN-RMA [7] leverages a pre-trained 3D
reconstruction network to reconstruct point cloud scenes
from multiple views, followed by sparse convolution for
3D feature extraction and subsequent detection. However,
this approach requires real point cloud data as a supervi-
sion signal to guide the reconstruction network, and due to
its staged training process, it is not end-to-end, which lim-
its its practicality in real-world applications. Despite these
constraints, our GO-N3RDet achieves comparable perfor-
mance on the ScanNet [3] dataset, with an accuracy of
58.6%, matching that of CN-RMA. Our method eliminates
the need for real point cloud supervision, supports end-to-
end training, and demonstrates superior training efficiency
by requiring significantly fewer training epochs—14 com-
pared to 192—while maintaining competitive performance.
Furthermore, our end-to-end method only requires ∼12 hr
on 4 A100 GPUs, whereas CN-RMA necessitates ∼10 hr
for MVS pre-training, ∼2 hr for the detection module, and
∼20 hr for fine-tuning on the same hardware, highlighting
the efficiency and practicality of our approach.

The latest MVSDet [9] incorporates Gaussian Splatting
into indoor 3D object detection, introducing an end-to-end
modeling approach. On the ScanNet [3] dataset, MVSDet
achieves significant improvements over NeRF-Det, demon-
strating an mAP of 56.2 compared to NeRF-Det’s perfor-
mance. However, our GO-N3RDet outperforms MVSDet
with an mAP of 58.6, highlighting its superior ability to
leverage NeRF and multi-view features for enhanced multi-
view 3D object detection.

C. More Results
C.1. Per-category results

We evaluate per-category performance on the ARK-
ITScenes dataset at an IoU threshold of 0.25. Table 6 re-
ports results across 18 classes. Compared to existing meth-
ods, our approach demonstrates a significant improvement,



Methods cab fridg shlf stove bed sink wshr tolt bthtb oven dshwshr frplce stool chr tble TV sofa mAP@.25

ImVoxelNet-R50 [6] 32.2 34.3 4.2 0.0 64.7 20.5 15.8 68.9 80.4 9.9 4.1 10.2 0.4 5.2 11.6 3.1 35.6 23.6
NeRF-Det-R50 [8] 36.1 40.7 4.9 0.0 69.3 24.4 17.3 75.1 84.6 14.0 7.4 10.9 0.2 4.0 14.2 5.3 44.0 26.7
Ours-R50 33.5 73.8 30.4 15.5 78.8 47.3 72.0 80.1 66.3 51.9 16.4 10.0 21.9 55.8 44.1 2.2 59.9 44.7

Table 6. Results on ARKITScenes [1] validation set with mAP@0.25. R50 refer to the ResNet50 backbone networks.

achieving a mAP@0.25 of 44.7%. Specifically, our method
outperforms ImVoxelNet-R50 [6] and NeRF-Det-R50 [8] ,
which achieve mAP@0.25 scores of 23.6% and 26.7%, re-
spectively, with a margin of 21.1% and 18.0%. These im-
provements highlight the effectiveness of our method in en-
hancing voxel representation and improving 3D detection
accuracy across diverse object categories in ARKITScenes.

C.2. More Qualitative Results

In Fig.1 , we present visualization results of novel view
synthesis using the NeRF branch on the ScanNet [3] dataset,
including RGB and depth images. The synthesized novel
views effectively capture objects within the scene. For ex-
ample, the left side of the first row shows a refrigerator filled
with beverages of various colors, for which our method gen-
erates realistic novel view synthesis results.

As illustrated in Fig.2 and Fig.3, We provide more qual-
itative comparisons between our method and the baseline
methods on ScanNet [3] and ARKITScenes [1] datasets.

D. Limitations
While our GO-N3RDet model demonstrates substantial

accuracy improvements over prior NeRF-based methods,
integrating multi-view techniques with NeRF inevitably in-
curs higher computational costs, especially as the number of
views and sampling points increases. This reflects the inher-
ent trade-off between capturing richer geometric informa-
tion and computational efficiency, a challenge common to
most multi-view approaches. In our work, we observed that
constructing voxel features using a single pixel feature per
voxel, obtained through max pooling across views, is suffi-
cient to achieve promising results. This approach avoids the
computational cost of aggregating features from all views,
as required in methods like average pooling. This observa-
tion suggests that future work could explore more effective
view selection strategies or develop methods to utilize im-
age features more efficiently, further improving the detec-
tion network’s overall performance and computational effi-
ciency.
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Figure 1. Novel view synthesis results for GO-N3RDet. For each triplet, the left image shows the synthesized result, the middle image
presents the real RGB image, and the right image displays the estimated depth map. Note that these visualizations are from the test set and
were never seen during training.

Figure 2. Representative qualitative results on ARKITScenes dataset [1]. As compared to the baseline, i.e., NeRF-DET [8], GO-N3RDet
enhancement not only enables detection of more challenging objects, but also reduces false positive detections. Best viewed on screen.



Figure 3. Representative qualitative results on ScanNet dataset [3]. As compared to the baseline, i.e., NeRF-DET [8], GO-N3RDet
enhancement not only enables detection of more challenging objects, but also reduces false positive detections. Best viewed on screen.
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