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Train Test
Method | 2DGS Ours | 2DGS  Ours

SSIM 1 | 0938 0.937 | 0.903 0.904
PSNR 1 | 34.48 33.78 | 28.37 28.40
LPIPS | | 0.169 0.171 | 0.195 0.195

Table 1. Rendering quality on DTU [4] dataset.

1. Source Codes

We provide our demonstration code as a part of our supple-
mentary materials. We will release the source code, data
and pretrained models upon acceptance.

2. Implementation Details

Details for Self-supervision. For sampling root points, we
first sample random points from a standard normal distri-
bution and then transform them onto the 2D Gaussian’s
plane using the corresponding rotation matrix, variance, and
mean. The offset direction of these root points is deter-
mined by the normal vector of the Gaussian that generated
them. For Gaussians whose maximum scale exceeds a cer-
tain threshold, we sample more root points. Specifically, we
set this threshold to three times the mean of the maximum
scales of all Gaussians.

Data Preparation. To validate the effectiveness of our
method on real-world data, we additionally captured four
scenes with open surfaces. We took 50-90 images per
scene with a smartphone, each image with a resolution
of 4032 x 3024. Following the processing procedure of
NeuS [7], we first used COLMAP [6] to estimate a sparse
point cloud, then manually adjusted the regions of interest,
and finally estimated the corresponding camera parameters
for training.

3. Visualization for Optimization Process

We show the training process in Figure 1 and Figure 2. Dur-
ing training, we first optimize the rendering loss to learn
the Gaussian representations, then use the far supervision
to guide the implicit field in learning a coarse shape from
the Gaussian centers. Based on this, we incorporate the
projection loss to optimize the Gaussian point cloud, lead-
ing to thinner surfaces and much less noises around geom-
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Figure 1. Training process of rendering image.
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Figure 2. Training process of reconstructing meshes.

etry structures. Meanwhile, we add the self-supervision to
achieve more accurate and complete reconstruction. Please
refer to the whole process in our video for more details.



Method ‘ 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 | Mean
NeuS[7] 1.00 137 093 043 1.10 065 057 148 1.09 083 052 120 035 049 054 | 0.84
3DGSJ5] 2.14 153 208 1.68 349 221 143 207 222 175 179 255 153 152 150 | 196
SuGaR[2] 147 133 113 061 225 171 115 163 162 107 079 245 098 088 079 | 133
2DGSJ3] 048 091 039 069 101 083 081 136 127 076 070 140 040 076 0.52 | 0.80
GSPull[9] 051 056 046 039 082 067 08 137 125 073 054 139 035 088 042 | 0.75
GOF[8] 050 082 037 037 1.12 074 073 118 129 068 077 090 042 0.66 049 | 0.74
NeuralUDF | 0.69 1.18 0.67 044 090 0.66 0.67 132 094 095 057 086 037 056 055 | 0.75
2S-UDF*[1] - 0.89 - 0.55 - 0.68 0.88 - 1.15 070 0.74 - 041 0.61 051 071
VRPrior[10] | 0.55 095 045 043 094 0.75 0.61 140 101 074 060 094 031 050 050 0.71
Ours 062 0.67 043 042 083 08 0.72 120 103 0.68 061 0.63 043 056 052 | 0.68

Table 2. Numerical comparisons in terms of CD on DTU [4] dataset. Bold and underlined numbers indicate the first
performance, respectively. *We use the metrics reported in the paper of 2S-UDF.

and second best

Setting ‘ 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 | Mean
Only Far 076 095 068 073 092 1.14 109 14 135 081 09 141 096 084 0.77 | 099
Far & Near | 0.6 069 04 048 084 084 084 137 113 07 076 116 049 074 0.62 | 0.78
Far & Proj 07 073 06 054 08 13 099 125 12 07 09 129 057 081 0.64 | 0.88
w/o Warp 065 069 041 048 082 08 076 121 1.08 0.67 065 1.14 051 065 053 | 074
w/o Near 072 079 053 04 08 102 091 129 102 072 068 079 065 067 0.6 0.77
w/o Proj 081 08 049 05 087 087 079 125 1.1 089 058 067 049 06 0.64 | 0.76
Full Model | 0.62 0.67 043 042 083 08 072 12 103 068 061 063 043 056 0.62 | 0.68

Table 3. The detailed CD on DTU [4] dataset for ablation studies.
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Figure 3. Rendering quality analysis on DTU [4] dataset. Our
method renders images with fewer floating artifacts.

Although our method focuses on multi-view surface recon-
struction tasks, Gaussian splatting naturally supports novel
view synthesis. Since we adopt a splatting process similar
to 2DGS [3], we compare our rendering results with 2DGS
to analyze how our approach impacts rendering quality. On
the DTU dataset, we use 12.5% of the images for validation,
while the remaining images are kept as the training set, and
we report the rendering metrics including PSNR, SSIM and
LPIPS.

The numerical comparisons are reported in Table 4. We
notice a drop for PSNR on the training set but the results on
test set show that our method achieves comparable render-
ing quality with 2DGS in novel view synthesis. The impact
of our method on the rendering process primarily comes
from the projection loss L,; that reduces the noises in the
Gaussian point clouds. To further analyze the reason, we
visualize the rendered images in Figure 4. The scenes in the
DTU dataset feature complex illumination conditions, and
2DGS tends to overfit these illumination variations, result-
ing in the generation of additional noisy Gaussians during
the densification process. Our method smooths out these
noises, which compromises the representation of the illu-
mination. However, this smoothing removes the floating
artifacts and leads to an improvement in rendering quality.



Figure 5. More reconstruction results on DTU [4] dataset.

Overall, our method achieves results that are quantitatively
comparable to 2DGS.

5. More Results

We show more visual comparisons in our video. The com-
parisons show that our method recovers more accurate and
thinner surfaces for open structures either in synthetic or
real scenes. We visualize more reconstructed meshes on



Train Test
Method | 2DGS  Owurs | 2DGS  Ours
SSIM 1T | 0.938 0.937 | 0.903 0.904

PSNR 1 | 3448 33.78 | 28.37 28.40
LPIPS | | 0.169 0.171 | 0.195 0.195

Table 4. Rendering quality on DTU dataset.
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Figure 6. Visual comparisons with GSPull [9] show that our
method reconsturcts surfaces with less errors.

DF3D [11] in Figure 4 and on DTU [4] in Figure 5.And we
provide visual comparisons with GSPull [9] on the DTU
dataset shown in Fig. 6. The results show our method pro-
duces more accurate and complete surfaces.

The detailed results of the comparison experiments and
ablation studies on the DTU dataset are reported in Table
2 and Table 3, respectively. Our method achieves a lower
average Chamfer distance, indicating that the reconstructed
surfaces have smaller errors and that our approach is more
robust compared to baseline methods.

6. Video

We provide a video containing training process visualiza-
tion, field visualization, visual comparisons on all datasets,
and application of point cloud deformation as a part of our
supplementary materials.

References

[1] Junkai Deng, Fei Hou, Xuhui Chen, Wencheng Wang, and
Ying He. 2S-UDF: A novel two-stage UDF learning method
for robust non-watertight model reconstruction from multi-
view images. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5084—
5093, 2024. 2

[2] Antoine Guédon and Vincent Lepetit. SuGaR: Surface-
aligned Gaussian splatting for efficient 3D mesh reconstruc-
tion and high-quality mesh rendering. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5354-5363, 2024. 2

[3] Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and
Shenghua Gao. 2D Gaussian splatting for geometrically ac-
curate radiance fields. In ACM SIGGRAPH 2024 Conference
Papers, pages 1-11, 2024. 2

[4] Rasmus Jensen, Anders Dahl, George Vogiatzis, Engin Tola,
and Henrik Aanzs. Large scale multi-view stereopsis evalu-
ation. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 406-413, 2014.
1,2,3,4

[5] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler,
and George Drettakis. 3D Gaussian splatting for real-time
radiance field rendering. ACM Trans. Graph., 42(4):139-1,
2023. 2

[6] Johannes L Schonberger and Jan-Michael Frahm. Structure-
from-motion revisited. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
4104-4113, 2016. 1

[7] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. NeuS: Learning neural im-
plicit surfaces by volume rendering for multi-view recon-
struction. In Advances in Neural Information Processing
Systems, pages 27171-27183, 2021. 1,2

[8] Zehao Yu, Torsten Sattler, and Andreas Geiger. Gaussian
opacity fields: Efficient adaptive surface reconstruction in
unbounded scenes. ACM Trans. Graph., 2024. 2

[9] Wenyuan Zhang, Yu-Shen Liu, and Zhizhong Han. Neu-
ral signed distance function inference through splatting 3D
Gaussians pulled on zero-level set. In Advances in Neural
Information Processing Systems, 2024. 2, 4

[10] Wenyuan Zhang, Kanle Shi, Yu-Shen Liu, and Zhizhong
Han. Learning unsigned distance functions from multi-view
images with volume rendering priors. In Proceedings of the
European Conference on Computer Vision, 2024. 2

[11] Heming Zhu, Yu Cao, Hang Jin, Weikai Chen, Dong Du,
Zhangye Wang, Shuguang Cui, and Xiaoguang Han. Deep
Fashion3D: A dataset and benchmark for 3D garment re-
construction from single images. In Proceedings of the
European Conference on Computer Vision, pages 512-530.
Springer, 2020. 3, 4



