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A. Implementation Details

Depth Prompting: To select viewpoints, we uniformly dis-

tribute 2048 virtual cameras on a spherical surface around

the partial point cloud. Each camera has a resolution of 256,

is positioned at a distance of 1.6 units, and has a field of view

(FOV) of 49.1°. When projecting the point cloud into depth

maps, we assign a pixel size of 1 for dense point clouds and

2 for sparse ones, with a consistent mask pixel size rate of 3.

For depth inpainting, we make use of a pre-trained diffusion

model [3] with a resolution of 256×256. Meanwhile, depth-

conditioned generative modeling leverages ControlNet [7]

with 30 inference steps and a conditioning scale of 0.99,

generating outputs at 1024×1024 resolution.

Image-to-3D generative model: The Image-to-3D genera-

tive model, InstantMesh [5], uses a base-scale configuration

with 75 inference steps, a scale of 1, a distance parameter of

4.5, and six views for rendering.

Geometric Preserving Fusion: In the Refining step, the

parameter setup for Gmiss is shown in Table 1. During the

refining process, the output resolution is set to 256×256 with

a batch size of 12, and the process is run for 100 iterations.

B. Failure Case and Limitation

Our method starts by obtaining depth from the scanned view-

point of the input partial point cloud. While this approach

effectively addresses the issue of missing points caused by

self-occlusion in the partial point cloud, it faces challenges

in scenarios where large areas of the object are heavily oc-

cluded by other objects. In such cases, the quality of the

geometric details may be affected, as illustrated in Figure 1.

However, by integrating both 2D and 3D generative mod-

els, our method alleviates these challenges to some extent,

producing results with globally correct shapes. In contrast,

SDS-Complete struggles to handle such severe occlusion

challenges, often resulting in incomplete reconstructions.
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Table 1. 3D Gaussian Parameter Setup for Gmiss.

Parameter Value

Initial Opacity 1

Color Learning Rate 0.005

Opacity Learning Rate 0.005

Scaling Learning Rate 0.005

Spherical Harmonics Degree 0

Initial Position Learning Rate 0.001

Final Position Learning Rate 0.0003

Table 2. Comparison of Completion Time on the Redwood Dataset.

Ours* represents GenPC without Refining (�1 CD and EMD ×102).

Methods CD↓ EMD↓ Time↓
SDS-Complete 2.72 4.06 ≈40 Hours

Ours* 1.98 3.16 ≈1 Minute
Ours 1.74 2.88 ≈2 Minutes

Another limitation of our method is its reliance on several

pre-trained models, whose performance significantly affects

the final completion results. However, this also indicates

that: With advanced techniques and data, we can utilize

more powerful pre-trained models to improve GenPC.

Table 3. Quantitative comparison on unseen categories of the

ShapeNet dataset (�1 CD ×103).

Methods PoinTr SnowflakeNet AdaPoinTr Ours

Guitar 8.96 6.37 5.11 4.62
pistol 10.81 8.23 7.90 6.84

C. Complexity Analysis
We show the complexity analysis in Table 2, where the quan-

titative results and completion time on the Redwood dataset

are shown. Compared with the previous zero-shot method

SDS-complete [4], our method significantly reduces com-

pletion time while improving completion quality. This is
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Figure 1. Failure cases. When Pin suffers from both self-occlusion (black boxes) and external occlusion (red boxes), the external one may

undermine the quality of the generated image Igen and affect the overall completion performance.

Table 4. Results on the Redwood dataset with different incomplete-

ness types (CD and EMD).

Methods PoinTr Snowflake AdaPoinTr ShapeFormer Ours

N1 2.93/6.61 3.08/5.87 4.47/7.23 3.83/6.04 1.97/3.37
N2 3.16/6.93 3.18/5.93 4.64/7.62 3.94/5.89 2.33/3.84
DR 3.05/6.98 2.96/5.56 4.41/7.21 4.58/6.50 1.92/3.45
DV 3.41/7.45 3.31/6.10 4.50/7.32 4.54/5.72 2.18/3.71

CUT 4.83/7.76 4.24/6.01 5.07/7.89 5.23/6.81 2.76/4.89
SCAN3 2.81/5.25 2.67/5.32 4.33/6.73 3.43/4.69 1.51/2.43
SCAN5 2.60/5.98 2.60/5.26 4.22/6.79 2.96/4.10 1.38/2.26

Table 5. Results using different prompts (CD and EMD).

Prompt Null Category Detail

CUT 4.39/6.33 2.76/4.89 2.45/4.47
Standard 1.84/3.10 1.74/2.88 1.66/2.73

Table 6. Comparison with generative method [6] (TMD and UHD).

Method ShapeFormer Ours

CUT 12.53/9.66 3.84/0.95
Standard 12.96/10.84 2.51/0.79

achieved by leveraging a feed-forward 3D generative model

to generate an explicit 3D prior in just a few seconds. By

doing so, our method avoids the need to optimize an SDF

from scratch, as in SDS-Complete, thus accelerating the

completion process and enhancing the quality of the results.

D. Robustness to Incompleteness Types
To evaluate the robustness of GenPC on different types of in-

completeness, in Table 4, we constructed four types of degra-

dation benchmarks for the partial point clouds in Redwood:

a) Adding Gaussian noise with σ = 0.005/0.01 (N1/N2); b)
Geometrically cutting 50% points (CUT); c) Randomly delet-

ing 98% points and downsampling with a voxel size of 0.07

(DR/DV); d) Fusing depth maps from 3 and 5 consecutive

viewpoints (SCAN3/5); As shown in Table 4, GenPC demon-

strates robustness to point cloud sparsity and noise. While

large missing regions have some impact on performance,

our method still achieves SOTA results. Notably, more fused

depth maps boost completeness as the input contains more

structural information.

E. Effect of Text Prompt

In our main experiments, the text prompt is set as the cat-

egory name. To explore the impact of the text prompt, we

conduct experiments on the standard and CUT versions of

Redwood under three prompt configurations: Null prompts,

category prompts, and prompts with detailed structure de-

scriptions. As shown in Table 5, the absence of text prompts

has a negligible impact on completion performance in typ-

ical scenarios. However, in extreme occlusion scenarios, it

leads to decreased performance. In such cases as shown in

Figure 2 (left), category text prompts significantly improve

the structural reasoning of occluded regions. Additionally,

using more detailed prompts can produce varying structures

in the missing parts as shown in Figure 2 (right).

F. Comparison with Generative Method

Comparison with the generative method ShapeFormer [6] us-

ing multi-modal metrics is shown in Table 6, where GenPC

significantly outperforms ShapeFormer in both metrics. We

find that structural uncertainties in the CUT dataset cause

increased TMD compared to the standard setting. Mean-

while, the negligibly small UHD values indicate that GenPC

effectively preserves the input structure.

G. Experimental Results on ShapeNet

We conducted quantitative comparisons on unseen categories

from the ShapeNet [1] dataset, with the results presented in

Table 3. Qualitative comparisons are provided in Figures 3

and 4. Our method surpasses previous approaches in both

quantitative performance and visual quality on unseen cat-

egories, maintaining consistent shapes and capturing fine

details without introducing noise.

H. More Visual Results on the Scannet Dataset

We provide additional visual results on the ScanNet [2]

dataset in Figure 5. Our method is capable of preserving
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Figure 2. Igen generated with different prompts. (Left) Under severe occlusion, prompts describing category names can enhance image

generation quality compared to null prompts. (Right) Varying types of results can be generated by using diverse prompts.
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Figure 3. Qualitative comparison of guitar category in ShapeNet dataset.
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Figure 4. Qualitative comparison of pistol category in ShapeNet dataset.
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Figure 5. Visualization results on the ScanNet dataset.



geometric fidelity while accurately reconstructing missing

structures and maintaining fine details.
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