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1. Hyper-Seg Data Engine

1.1. Wavelength Selection

To utilize the spectral information rather than only the RGB
channels, Hyper-Seg engine separates the original image
into 3 groups with different wavelength combination, where
we refer to the famous Landsat-8 satellite in Table 1. The
selected wavelengths represents the valuable practical ex-
perience and cover the overall range from 0.4 ∼ 2.5µm.

Table 1. Statistical results of classical multispectral satellites about
the selected wavelengths, supporting the wavelength selection of
Hyper-Seg data engine and the weight dictionary βk.

Satellite Central Wavelengths(nm)
Landsat-7 482.5, 565, 660, 825, 2220, 1650, 11450

Landsat-8
443, 482.5, 562.5, 655, 865,

1610, 1375, 2200, 10895, 12005

Sentinel-2A/2B
443, 490, 560, 665, 705, 740, 783,
842, 865, 945, 1375, 1610, 2190

WorldView-2/3 425, 480, 545, 605, 660, 725, 832.5, 950

ZY1-02D/E
486.5, 564.5, 662.5, 835.5,

434, 612, 730, 959
ZY-3 485, 555, 660, 830

RapidEye 455, 555, 655, 710, 805
PlanetScope 485, 545, 630, 820
GeoEye-1 480, 545, 672.5, 850
SPOT-6/7 485, 560, 655, 825

Pleiades-1A/B 490, 560, 650, 840
IRS-P6 555, 640, 815, 1625

KOMPSAT-2/3/4 485, 560, 660, 830
GF-1/2 485, 555, 660, 830
GF-4 485, 560, 660, 830, 3800
GF-6 485, 555, 660, 830, 720, 750, 425, 610

1.2. Statistical Information

Figure 1 reports the statistical information of constructed
Hyper-Seg dataset. With the non-maximum suppression
(NMS) operation, the number of final combined masks is
approximately 2 to 3 times the number of masks for each
group separately as in Figure 1 (a), indicating that Spectral-
Seg can utilize the spectral information effectively. From
Figure 1 (b) and Figure 1 (c), it can be observed that the
number density of generated masks in the three source
datasets is roughly equivalent and the small masks domi-
nate the dataset, increasing the segmentation difficulty.

2. Selection of Key Channels in Weight Dictio-
nary

In proposed channel-adaptive embedding layer, we design
a sperate branch for processing key channels, which are set
according to the successful prior of launched satellites in
Table 1. Each wavelength in Table 1 is selected by expert
knowledge. To merge the wavelengths that almost overlap
between different satellites, we sort all the wavelengths first,
take the average of every two adjacent wavelengths with
interval less than 10nm (common spectral resolution) and
substitute them. Combining with the longest wavelength
2500nm, a total of 85 wavelengths were selected to build
the learnable dictionary βk.

3. Overview of Experimental Datasets
All the used public datasets are summarized in Table 2,
which have different channel numbers and spectral ranges.
We have tested both the tuning-free manner and tunning
manner in five tasks including HC, HOCC, HTD, HAD and
HCD. Due to the different output formats, only tuning man-
ner is applied on HD, HU and HOT tasks.

Table 2. Summary of used public datasets on the eight tasks.

Tasks Datasets Number of
Channels

Spectral
Range (nm)

HC
LongKou [55]
HanChuan [55]
HongHu [55]

270
274
270

400 ∼ 1000
400 ∼ 1000
400 ∼ 1000

HOCC
HongHu [55]
XiongAn [50]

270
256

400 ∼ 1000
390 ∼ 1000

HTD
Airport [2]

Cri [51]
205
46

400 ∼ 2500
650 ∼ 1100

HAD
Beach-1 [2]
Beach-2 [2]

188
193

430 ∼ 860
430 ∼ 860

HCD
Hermiston [12]

River [12]
154
198

\
400 ∼ 2500

HD Washington D.C. [3] 191 400 ∼ 2400

HU Urban [15] 162 400 ∼ 2500

HOT HOTC 2023 [1] 56 460 ∼ 960

4. Additional Experiments
4.1. Qualitative Results in Tuning-free Manner

Complete visualization results are shown for five tasks. (a)
Figure 3, 4 and 5 for HC task. (b) Figure 6 and 7 for HOCC
task . (c) Figure 9 and 8 for HTD task. (d) Figure 10 and 11
for HAD task. (e) Figure 12 and 13 for HCD task. With the
powerful segmentation ability and PMF interaction, Hyper-
Free can achieve the best visualization performance without
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Figure 1. Some statistical information about the built large-scale Hyper-Seg dataset.

tuning compared to the specialized models training with 5
shots.

4.2. Quantitative and Qualitative Results With Tun-
ing

We have also tested the further tuning performance of Hy-
perFree as an extensive experiment. The tuned version is
denoted as HyperFree* for simplicity. The quantitative re-
sults are reported in Table 4 ∼ Table 11 for HC, HOCC,
HTD, HAD, HCD, HD, HU and HOT tasks, respectively.
For the five tasks supporting the tuning-free manner, the
qualitative results of HyperFree* are put together with re-
sults in Section 4.1. The qualitative results of HD, HU and
HOT tasks are shown in Figure 14, 15 and 16, respectively.
After tuning, HyperFree has achieved the best performance
in most datasets and tasks. Since HyperFree is proposed
mainly for tuning-free manner, we use the full-tuning set-
ting directly without using any advanced tuning methods.

Table 3. Execution time comparison with deep models on five
tuning-free tasks.

HC
SSFTT [41] MambaHSI [22] HyperFree

197.08s 429.86s 7.85s(1st)

HOCC
OC Loss [53] T-HOneCls [52] HyperFree

244.46s 344.48s 21.50s(1st)

HTD
HTD-IRN [40] TSTTD [14] HyperFree

25.05s 378.40s 9.85s(1st)

HAD
Auto-AD [43] TDD [18] HyperFree

78.81s 28.31s 11.72s(1st)

HCD
BIT [5] SST-Former [45] HyperFree
142.23s 116.05s 15.90s(1st)

4.3. Sensitivity Analysis

Prompt Number. In the five tuning-free tasks, HC and
HOCC need prompts of each category to generate the
semantic-aware results. We explored the relationship be-
tween model performance and the number of prompts as in
Figure 2. The mean and std of metrics are calculated for
each prompt number with 10 repeat experiments. We found
HyperFree is mostly insensitive to the prompt number in

Figure 2. Sensitivity analysis of the prompt number on the model
performance (HC and HOCC tasks).

both tasks and one prompt is good enough.
Hyperparameter τ . HyperFree completes five tasks di-

rectly with the PMF interaction, where the two interaction
modes are used adaptively with the hyperparameter τ . To
explore its sensitivity, we have varied it and reported the
corresponding results in Figure 17. HC task is not included
since it does not need any τ . Most tasks show a certain but
acceptable sensitivity to τ , where the HTD and HCD tasks
exhibit more variation. Despite this, the fluctuation range of
the metrics remains within an acceptable range of 0.1.

4.4. Execution Efficiency Comparison Experiments

Without the tuning process, HyperFree can reduce the pro-
cessing time by 1 ∼ 2 orders of magnitude compared to
other deep models as in Table 3.
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Table 4. Quantitative comparison results on HC task in tuning manner, where HyperFree* represents the tuning version and blue numbers
indicate the metric ranking.

Dataset Metric
SVM [28]

(5 shot)
HybridSN [38]

(5 shot)
FullyContNet [42]

(5 shot)
FPGA [54]

(5 shot)
SSFTT [41]

(5 shot)
MambaHSI [22]

(5 shot)
HyperFree*

(5 shot)

LongKou [55]
OA 82.77 48.78 86.67 91.18 89.66 92.65 92.10(2nd)
AA 74.02 61.37 85.6 88.35 87.96 92.57 92.71(1st)
KA 78.04 35.72 82.3 88.66 87.95 90.00 89.85(2nd)

HanChuan [55]
OA 52.68 47.75 55.55 71.47 64.86 73.33 83.56(1st)
AA 47.76 46.17 59.72 72.09 61.22 69.33 82.21(1st)
KA 46.85 41.31 50.18 67.58 59.65 69.1 81.03(1st)

HongHu [55]
OA 52.89 31.22 55.84 80.55 64.31 78.96 81.65(1st)
AA 45.97 34.14 67.25 75.12 64.53 76.02 85.56(1st)
KA 45.47 24.51 49.67 75.74 57.79 73.29 77.58(1st)

LongKou
(270 channels) 

GT

HyperFreeMambaHSI [22]

SVM [28] HybridSN [38] FullyContNet [42]

FPGA [54] SSFTT [41] HyperFree*

Figure 3. Qualitative comparison results on LongKou dataset of HC task, where HyperFree* represents the tuning version.

HanChuan
(274 channels) 

GT HyperFreeMambaHSI [22]SVM [28] HybridSN [38] Fully-
-ContNet [42]

FPGA [54] SSFTT [41] HyperFree*

Figure 4. Qualitative comparison results on HanChuan dataset of HC task, where HyperFree* represents the tuning version.
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HongHu
(270 channels) 

GT SVM [28] HybridSN [38] FullyContNet [42]

HyperFreeMambaHSI [22]FPGA [54] SSFTT [41] HyperFree*

Figure 5. Qualitative comparison results on HongHu dataset of HC task, where HyperFree* represents the tuning version.

Table 5. Quantitative comparison results on HOCC task in tuning manner, where HyperFree* represents the tuning version and blue
numbers indicate the metric ranking.

Dataset Metric
OCSVM [39]

(5 shot)
nnPU [16]

(5 shot)
BSVM [33]

(5 shot)
PAN [13]
(5 shot)

OC Loss [53]
(5 shot)

T-HOneCls [52]
(5 shot)

HyperFree*
(5 shot)

HongHu [55]
F1 26.33 19.13 34.82 63.69 54.73 72.52 91.24(1st)
P 56.43 19.72 50.79 75.00 58.26 46.52 92.77(1st)
R 24.02 18.58 45.29 64.27 54.34 92.35 89.90(2nd)

XiongAn [50]
F1 18.31 1.76 26.30 46.34 43.08 41.34 66.89(1st)
P 39.83 2.85 23.82 47.13 47.50 32.87 61.94(1st)
R 16.08 1.98 57.83 53.32 47.61 60.38 75.74(1st)

Cotton

Rape

Chinese
cabbage

Tuber
mustard

Carrot
GT OCSVM [39] BSVM [33]nnPU [16] OCLoss [53]PAN [13] T-HOneCls [52] HyperFree HyperFree*HongHu

(270 channels) 

Figure 6. Qualitative comparison results on HongHu dataset of HOCC task, where HyperFree* represents the tuning version.
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Maple

Elm

Bare
ground

Vegetable
field

GT OCSVM [39] BSVM [33]nnPU [16] OCLoss [53]PAN [13] T-HOneCls [52] HyperFree HyperFree*XiongAn
(256 channels) 

Figure 7. Qualitative comparison results on XiongAn dataset of HOCC task, where HyperFree* represents the tuning version.

Table 6. Quantitative comparison results on HTD task in tuning manner, where HyperFree* represents the tuning version and blue numbers
indicate the metric ranking.

Dataset Metric
ACE [17]
(1 shot)

CEM [4]
(1 shot)

GLRT [26]
(1 shot)

MF [27]
(1 shot)

HTD-IRN [40]
(1 shot)

TSTTD [14]
(1 shot)

HyperFree*
(1 shot)

Airport [2]
AUC(D,F) 0.9794 0.9603 0.9801 0.9916 0.9745 0.9929 0.9937(1st)
AUCODP 1.5853 1.2829 1.5798 1.6968 1.4484 1.6592 1.5945(3rd)

Cri [51]
AUC(D,F) 0.9735 0.9893 0.9737 0.9891 0.9975 0.9987 0.9976(2nd)
AUCODP 1.2015 1.4506 1.2 1.4575 1.3995 1.6103 1.4821(2nd)

Airport
(205 channels)

HTD-IRN [40] HyperFreeTSTTD [14]MF [27]

GLRT [26]CEM [4]GT ACE [17]

HyperFree*

Figure 8. Qualitative comparison results on Airport-4 dataset of HTD task, where HyperFree* represents the tuning version.

Table 7. Quantitative comparison results on HAD task in tuning manner, where HyperFree* represents the tuning version and blue numbers
indicate the metric ranking.

Dataset Metric RXD [37] CRD[20] ADLR [36] LRASR [49] Auto-AD [43] TDD [18] HyperFree*

Beach-1 [2]
AUC(D,F) 0.9815 0.9471 0.4515 0.7461 0.9574 0.9842 0.9973(1st)
AUCODP 1.2557 0.9785 0.561 0.8526 1.1273 1.1383 1.7862(1st)

Beach-2 [2]
AUC(D,F) 0.909 0.8544 0.7976 0.8225 0.9485 0.9627 0.9715(1st)
AUCODP 1.0177 0.867 0.9064 0.828 1.0097 1.1688 1.3900(1st)
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Cri
(46 channels)

HTD-IRN [40] HyperFreeTSTTD [14]MF [27]

GLRT [26]CEM [4]GT ACE [17]

HyperFree*

Figure 9. Qualitative comparison results on Cri dataset of HTD task, where HyperFree* represents the tuning version.

Beach-1
(188 channels)

Auto-AD [43] HyperFreeTTD [18]LRASR [49]

ADLR [36]CRD [20]GT RXD [37]

HyperFree*

Figure 10. Qualitative comparison results on Beach-1 dataset of HAD task, where HyperFree* represents the tuning version.

Beach-2
(193 channels)

Auto-AD [43] HyperFreeTTD [18]LRASR [49]

ADLR [36]CRD [20]GT RXD [37]

HyperFree*

Figure 11. Qualitative comparison results on Beach-2 dataset of HAD task, where HyperFree* represents the tuning version.
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Table 8. Quantitative comparison results on HCD task in tuning manner, where HyperFree* represents the tuning version and blue numbers
indicate the metric ranking.

Dataset Metric
FC-EF [7]

(5 shot)
FC-Sc [7]
(5 shot)

FC-Sd [7]
(5 shot)

ML-EDAN [34]
(5 shot)

BIT [5]
(5 shot)

SST-Former [45]
(5 shot)

HyperFree*
(5 shot)

Hermiston [12]
IoU 37.29 37.76 48.73 32.52 52.57 53.61 61.58(1st)
F1 54.32 54.82 65.52 49.08 68.91 69.8 76.22(1st)

River [12]
IoU 41.68 45.22 45.34 39.15 21.26 40.96 47.16(1st)
F1 58.84 62.28 62.39 56.28 35.07 58.12 64.09(1st)

HyperFree*BIT [5]ML-EDAN [34] SST-Former [45] HyperFree

FC-Sd [7]River
(198 channels)

FC-EF [7] FC-Sc [7]GT

Figure 12. Qualitative comparison results on River dataset of HCD task, where HyperFree* represents the tuning version.

Hermiston
(154 channels)

HyperFree*BIT [5]ML-EDAN [34] SST-Former [45] HyperFree

FC-Sd [7]FC-EF [7] FC-Sc [7]GT

Figure 13. Qualitative comparison results on Hermiston dataset of HCD task, where HyperFree* represents the tuning version.
Table 9. Quantitative comparison results on HD task in tuning manner, where HyperFree* represents the tuning version and blue numbers
indicate the metric ranking.

Dataset Metrics NGMee [9] LRTFL0 [47] E-3DTV [32] QRNN3D [46] DS2DP[29] SST [19] HyperFree*

Washington D.C. [3]
PSNR 23.89 25.58 25.97 27.79 27.31 28.1 28.49(1st)
SSIM 0.872 0.907 0.921 0.945 0.937 0.989 0.990(1st)

SAM(°) 14.89 11.35 8.772 7.563 7.735 6.343 6.251(1st)
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HyperFree*

Noise image E-2DTV [32]LRTFL0 [47]NGMeet [9]GT

SSTQRNN3D [46]DS2DP [29

Figure 14. Qualitative comparison results on Washington D.C. dataset of HD task, where HyperFree* represents the tuning version.

Table 10. Quantitative comparison results on HU task in tuning manner, where HyperFree* represents the tuning version and blue numbers
indicate the metric ranking.

Dataset Metric VCA-FCLS [10, 30] SGSNMF [44] uDAS [35] CNNAEU [31] CyCU-Net [8] GSUU [6] HyperFree*

Urban [15]
SAD 0.3859 0.4442 0.6498 0.5364 0.2750 0.1645 0.0446(1st)

RMSE 0.1061 0.0973 0.1009 0.0392 0.1597 0.1188 0.0170(1st)

Asphalt

Grass

Tree

Roof

VCA-FCLS [10, 30] SGSNMF [44] uDAS [35] CNNAEU [31] CyCU-Net [8] GSUU [6] HyperFree*GT

Figure 15. Qualitative comparison results on Urban dataset of HU task, where HyperFree* represents the tuning version.
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Table 11. Quantitative comparison results on HOT task in tuning manner, where HyperFree* represents the tuning version and blue
numbers indicate the metric ranking.

Data Metrics BAENet [23] MHT [48] SiamHYPER [25] SEE-Net [24] SiamBAG [21] TSCFW [11] HyperFree*

HOTC 2023 [1]
AUC 0.496 0.465 0.564 0.499 0.508 0.476 0.576(1st)
DP 0.757 0.733 0.778 0.737 0.736 0.708 0.796(1st)
FPS 0.8 0.5 29.8 16.8 14.1 4.1 16.4(3rd)

Name: VIS_Coke Attributes: BC, IPR, OPR, FM, SV Name: NIR_Car59    Attributes: OCC, SV, FM Name: RedNIR_Dice2    Attributes: LR, BC, OCC

Figure 16. Qualitative comparison results on HOCT 2023 dataset of HOT task, where HyperFree* represents the tuning version.

(a) HTD on Cri Dataset (b) HAD on Beanch Dataset

(c) HCD on Hermiston Dataset (d) HOCC on HongHu Dataset

Figure 17. Sensitivity analysis of the hyperparameter τ on the model performance.
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