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Supplementary Material

In this supplementary material, we provide more infor-
mation about implementation details (Sec. A) and addi-
tional results, including more qualitative and quantitative
comparisons with other methods (Sec. B, Sec. C, Sec. D),
evaluations on out-of-distribution data (Sec. E), evaluations
on pseudo ground truth images (Sec. F), evaluations on side
view renderings (Sec. G) and comparison with “2D diffu-
sion + depth” (Sec. H). Additionally, we add further discus-
sions on limitations (Sec. I).

A. Implementation Details
Network Architecture We build our model architecture
based on Space-Time U-Net [1]. We first downsample
512 × 512 images into 128 × 128 feature maps using one
convolution layer. Then the feature map is downsampled
into 64 × 64 by another convolution layer. In the color
branch, both downsample blocks and upsample blocks con-
sist of 2 Convolution-based Inflation blocks for resolution
64 and 3 Convolution-based Inflation blocks for resolution
32 and 16. We also add spatial and temporal self-attention
layers inside each block with resolution 16. In the geome-
try branch, each resolution only has one Convolution-based
Inflation block. We apply cross-attention layers between
the source image features and every block with 32 resolu-
tion in the color branch. The output feature map is firstly
upsampled by pixel shuffle from 64 × 64 into 128 × 128
and processed by a convolution layer. In the color branch,
the result 128 × 128 feature map is then upsampled into
outputs of 512 × 512 by another pixel shuffle and convo-
lution layer. In the geometry branch, 128 × 128 feature
map is firstly upsampled into 256 × 256 and then upsam-
pled into 512× 512 by pixel shuffle and convolutions. The
color branch predicts the estimated frontal/residual RGB
image of the Multiplane Images (MPIs), while the geometry
branch predicts alpha images of all planes. Since the geom-
etry branch does not take reference image as condition, ref-
erence image features are passed through zero-convolutions
between the color branch and the geometry branch.

Training Details In the data preparation stage, the refer-
ence and target pair of images are randomly selected from
the video following [7, 11], where the camera poses are ob-
tained through 3DMM fitting.

During the model bootstrapping described in main pa-
per Sec. 3.3, we only train the color branch with loss Lmpi

θ

Eq. (6). After bootstrapping, we freeze the color branch ex-
cept the output layer. Then, we train the geometry branch,

the output layer of the color branch, and all the zero convo-
lution layers with both losses Lmpi

θ Eq. (6) and Lside
θ Eq. (7).

In practice, in each iteration, we randomly select one loss
from the two to compute the gradients for updating the
model. We select the loss Lmpi

θ (Eq. (6)) with a probability
of 0.8, where MPIs are constructed using target cameras.
We select the loss Lside

θ (Eq. (7)) with a probability of 0.2,
where MPIs are constructed using reference cameras, and
target cameras serve as side-view cameras.

During training, the weight of LPIPS loss is set to 0.1
while the mask loss has a weight of 0.01. The mask loss
is formulated as L2 loss since the matting mask has soft
boundary. The depth smoothing loss is calculated by a
Laplacian kernel and has a weight of 0.01. The disparity
loss has a weight of 0.001. The drop rate of first frame is
0.7 while the drop rate of the reference portrait is 0.1.

Rendering Details Following [13], we choose Multi-
plane Images (MPIs) as our scene representation. We set
near and far planes of MPIs adaptively based on the dis-
tance r from the MPI frontal camera to the head joint of the
parametric model. We place the near plane at r−0.15 while
the far plane at r + 0.05.

During inference, we handle camera via two methods: 1)
Rendering the generated MPIs into explicit cameras {φside};
2) Rasterizing the 3DMM UV coordinate maps into freely
selected MPI frontal cameras as the diffusion controlling
signals {C}. In our experiments, all the side view render-
ings, stereo renderings and rendering speed measurements
are conducted through the first method. When we render
novel views through the first method, novel camera views
must stay within a specifiv range of the MPI frontal camera
to avoid pose deviations affecting rendering.

Long Video Classifiers-Free-Guidance (CFG) During
inference, we assign two different CFG scales to first frame
condition and reference portrait condition following Brooks
et al. [2]. The guidance scale of the reference portrait is
1.5. The guidance scale of the first frame is linearly de-
creased from 1.0 to 0.0 from the beginning to the middle
of the video clip while the remaining 16 frames in the clip
shares a scale of 0.0.

We show the ablation on first frame’s classifier-free guid-
ance in Fig.A. We compare our scheduled scale with con-
stant guidance scale of 1.5. As show in Fig.A, artifacts be-
come more pronounced as additional frames are generated.



Method
VFHQ Self-Collected Dataset

L1 ↓ LPIPS ↓ FID ↓ FVD ↓ L1 ↓ LPIPS ↓ FID ↓ FVD ↓
Face-V2V 0.051 0.290 71.58 226.42 0.050 0.208 47.13 405.34

EmoPortrait 0.064 0.251 48.96 292.01 0.071 0.236 52.85 506.70
Portrait4d-v2 - - 54.26 329.58 - - 54.46 553.42

Follow-your-emoji 0.057 0.198 32.40 214.29 0.060 0.181 34.94 364.36
X-Portrait 0.061 0.204 26.22 211.62 0.062 0.185 32.77 499.67

Ours 0.054 0.204 33.10 201.41 0.048 0.174 36.98 342.78

Table A. More comparisons on VFHQ and self-collected dataset. We further compare our method with baselines on both VFHQ
and self-collected dataset. Our method achieves comparable image quality and the best video quality (FVD), which is consistent with
quantitative comparison in the main paper.
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Figure A. Ablation on first frame’s classifier-free guidance. We
compare the generated results using a constant classifier-free guid-
ance scale for the first frame versus our scheduled guidance scale.

However, using our scheduled scale helps prevent the accu-
mulation of errors.

B. Additional Qualitative Results
We show more qualitative results on HDTF and Talking-
head1kh datasets in Fig.C. Face-V2V [9] shows good con-
sistency against the driving signal and the reference portrait,
while losing details due to its low output resolution. Emo-
Portrait [5] gives sharp renderings but suffers from iden-
tity shifts. Portrait4D-v2 [4] shows better identity consis-
tency, but losses subtle facial movements. XPortrait [11]
and Follow-your-emoji [7] generates sharp and high qual-
ity frames but suffers from expression and head pose mis-
alignment against the driving signal. Our method generates
sharp results that faithfully following driving signals while
keeping the identity of generated avatar aligned with the
reference portrait. For more comparisons on video quality,
please refer to our project page in supplementary material.

Before evaluation, we fix the cropping of all the eval-
uation data with a tight cropping around head as show in
Fig.B.

C. Additional Quantitative Results
We show more qualitative results on VFHQ [10] and self-
collected dataset in Tab.A. For VFHQ dataset, we sample

Original cropping Fixed cropping
Figure B. Fixed cropping. We preprocess some portraits with a
tighter cropping around head.

Method
HDTF Talkinghead1kh

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
Face-V2V 27.00 0.865 24.17 0.823

EmoPortrait 22.35 0.794 19.59 0.731
Follow-your-emoji 24.16 0.811 21.50 0.759

X-Portrait 24.54 0.820 21.82 0.767
Ours 24.83 0.833 22.43 0.777

Table B. PSNR and SSIM on HDTF and Talkinghead1kh
datasets. PSNR and SSIM rankings align with the L1 score rank-
ings in Table 1 of the main paper.

the first 100 frames from all evaluation identities. The
self-collected dataset has 50 identities, while each has 32
frames. Consistent with the other two datasets in the main
paper, ours achieves the best video quality (FVD) while
being competitive in other image-based metrics on VFHQ
dataset. On self-collected dataset, ours achieves the best
L1, LPIPS and FVD scores. The cross-dataset evaluations
following [3] reinforces the generation quality and general-
izability of our model.

D. Further Explanations on Comparisons

In Tab.1 in main paper, we report L1 scores instead of PSNR
and SSIM, as these latter metrics are more suitable for pixel-
wise alignment in neural rendering tasks, while LPIPS bet-
ter aligns with perceptual image quality and tolerates some
misalignment [8]. As shown in Tab. B, PSNR and SSIM
closely correlate with L1 scores reported in Tab.1, where
our method performs worse than non-generative methods
like Face-V2V but outperforms others. Due to the gener-
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Figure C. Talking head results. We show more results from previous work and our method.



Method FVD ↓ FID ↓
Face-V2V [9] 134.92 23.29

EmoPortrait [5] 197.87 34.54
Portrait4d-v2 [4] 185.42 28.86

Follow-your-emoji [7] 154.14 20.88
X-Portrait [11] 199.27 21.03

Ours 107.90 18.00

Table C. Evaluation of rendering quality on cross-identity reen-
actment.

ative nature of diffusion models, our method has slightly
lower L1 scores but achieves better LPIPS, as it tolerates
misalignments. As shown in both Tab.1 and Tab.B, while
sharing network capacity for geometry and learning without
3D data results in a slightly lower FID compared to purely
2D video methods (e.g., Follow-your-emoji, X-Portrait), we
still achieve competitive results across all image quality
metrics and the best FVD score, which evaluates both image
and temporal quality.

E. Evaluation on Out-of-distribution Data
We further test our model on out-of-distribution data. De-
spite trained on real world talking-head videos, our model
still generalizes to stylized portraits generated by Stable-
Diffusion 3 [6]. Results are shown in Fig.F.

We also evaluate our model on large head pose move-
ments between reference portraits and target expressions
through the second method mentioned in Rendering De-
tails of Sec.A. As shown in Fig.D, our model generalize
to large head pose movements. However, in some extreme
cases, e.g. reference portrait only includes side view of the
head, our model may struggle to generate aligned results
with ground truth.

F. Evaluation on Pseudo Ground Truth Images
In Fig.E, we show some examples of pseudo ground truth
images mentioned in Reference-Target Alternating Training
section. The generated pseudo ground truth images aligns
with target expressions. Note that the pseudo images are
only used in training when noise is large, so they don’t need
to be sharp and clear as long as the global structure is cor-
rect.

G. Evaluation on Side Views
We evaluate our method on side view renderings with
HDTF dataset. We select Face-V2V [9], EmoPortrait [5],
Portrait4D-v2 [4] as baselines since they have 3D repre-
sentations or implicit 3D feature volumes that support ex-
plicit camera control. On the other hand, the diffusion-
based baselines [7, 11] only take in images or eyes and

Method FID ↓
View Point Random within ±5◦

Face-V2V [9] 22.27
EmoPortrait [5] 27.71
Portrait4d-v2 [4] 27.83

Ours 2D + Depth [12] 19.72
Ours 18.12

Table D. Evaluation of side view rendering quality. Our method
outperforms all the baseline on rendering quality.

mouth landmarks, thus do not enable explicit camera con-
trol. More specifically, we render several frames by apply-
ing a random horizontal viewpoint change (rotate the cam-
era around a fixed look-at point) uniformly sampled from
±5◦, and compute the FID score. All the evaluations are
performed in a self-reenactment way. The evaluation re-
sults are shown in Tab.D, where our method outperforms all
the baselines on FID score. For more visualizations of our
method’s side view renderings, please refer to the project
page in supplementary material.

H. Compare With 2D Diffusion and Depth Pre-
diction

We also build up a baseline with the 2D video diffusion vari-
ant of our model and a monocular depth predictor [12] to
lift the images into 3D. To be specific, we firstly run depth
predictor on all the generated frames. The predicted monoc-
ular depth is then aligned with depth of 3DMM mesh by
calculating scale and shift. Since the 3DMM mesh doesn’t
have hair and cloth geometry, we sample depth values on
detected facial landmarks as inputs for alignment. Before
rendering, we first project aligned depth into 3D then con-
nect 3D points of adjacent pixels to create triangles. We
also use foreground matting mask to filter out background
vertices. During rendering, we use the same background
image used by our method.

We compare our method with this baseline and show FID
comparisons in Tab.D. We also show qualitative compar-
isons in Fig.G. Using monocular depth estimator to lift 2D
diffusion to 3D suffers from blurry results in occluded re-
gions. Moreover, this baseline also fails to render detailed
geometry such as hair as shown in the last row of Fig.G.

I. Additional Discussions on Limitations
As discussed in the main paper, our model mainly fo-
cuses on realistic foreground human rendering, while back-
ground is generated by an inpainting network following [5].
Thus, the generated results do not include animation in the
background. To achieve more realistic generated results
for background, future works could train an auxiliary net-
work to animate the inpainted background. Furthermore,
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Figure D. Evaluation on large head pose movements. We show generated results in the MPI frontal camera where the target head poses
deviate largely from reference portrait’s head poses. In the last row, generated result doesn’t align with ground truth since the reference
portrait doesn’t contain any information about the other side of the character.

Reference Portrait Pseudo GT Image Target Expression Reference Portrait Pseudo GT Image Target Expression

Figure E. Evaluation on pseudo ground truth images. We show pseudo ground truth images used in the Reference-Target Alternating
Training. Pseudo images are only used when large noise is sampled. Though there exist drifting in the color tone, the global structure of
generated result aligns with target expressions.

Reference Portrait Target Expression Target ExpressionGenerated Result Generated Result

Figure F. Evaluation on synthetic images. We show generated
results when taking synthetic images as reference images. Though
trained on a real-world distribution, our model is able to general-
ize to synthetic images even with a huge gap between the color
distribution.

as shown in Fig.D, large self-occlusions in the reference

portrait may lead to degraded results in the unseen facial
region. Future work could focus on introducing facial sym-
metry priors to mitigate this issue.
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