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Supplementary Material

A. Extended Experiment and Analysis

We provide an extended experiment to further demonstrate
the generality of the conflict in MBA scenarios. In addition
to this, we give a simple theoretical analysis of confliction.

A.1. Experiments with different attack methods

In Fig. 1, we illustrate the conflict arising when two attack-
ers employ the same attack method (Vanilla). Here, we
further conduct an extend experiment using three distinct
attack methods under non-collusive conditions. The ASR
curves are depicted in Fig. 7. These experimental results
validate our motivation, indicating that different attackers
will indeed conflict in MBA scenarios. Furthermore, NBA
[27] has also observed this issue, yet they did not provide
an explanation or an effective solution. In this paper, we
conduct an in-depth investigation to uncover the inherent
constraints of exclusion and propose an effective backdoor
attack method to address these constraints.
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Figure 7. ASRs of different attack algorithms.

A.2. Theoretical Analysis

The inference of a CNN model can be represented as
θc(θf (x)), where θc(·) is a classifier and θf (·) is the fea-
ture extractor. As we present in Fig. 1 t-SNE, if two attack-
ers (R and B) construct similar Out-of-Distribution (OOD)
mapping for their backdoor function, their backdoor sam-
ples (xR and xB) exhibit overlapping distributions in the
feature space, i.e., θf (xR) and θf (xB) are similar. Such
similarity renders the backdoor samples of them indistin-
guishable. So, the predictions depend on which attacker
dominates the model, a factor that is inherently uncontrol-
lable (see Fig. 1, where the changing ASRs indicate ongo-
ing conflicts). To prevent R and B from constructing similar
backdoor mappings, we construct In-Distribution (ID) map-
ping. Therefore, θf (xR) and θf (xB) will be mapped to the
clean distribution of their target classes (Fig. 2c) to avoid
conflict under non-collusive conditions.

B. Algorithm Outline
We describe the process of Mirage as follows:

At t-th FL round, the attacker (assuming the index of this
attacker is i) is selected by the server and receives the lat-
est FL global model θt. Lines 4-5 train the detector based
on the feature extractor of the current global model and the
trigger pattern to discriminate whether a sample is OOD
sample. Lines 7-10 optimize the trigger pattern based on
the detector loss (proposed in Section 4.3) and the enhance-
ment loss (provided in Section 4.4) for one batch of data.
Lines 14-17 train the local model on the poisoned dataset
and upload the local updates to the server.

C. Datasets Details
In the experimental evaluations, we leverage three computer
vision datasets: CIFAR-10, CIFAR-100 [17], and GTSRB
to evaluate the performance of our proposed method.

CIFAR-10: The CIFAR-10 dataset consists of 60,000
32x32 color images in 10 classes, including dogs, cats, and
cars. For each class, there are a total of 6,000 samples, with
5,000 for training and 1,000 for testing.

CIFAR-100: The CIFAR-100 dataset is similar to
CIFAR-10, except it has 100 classes containing 600 images
each, with 500 training images and 100 testing images. Ad-
ditionally, these 100 classes can be grouped into 20 super-
classes, such as aquarium fish, flatfish, ray, shark, and trout,
which can be grouped into the superclass ”fish.” In this pa-
per, we use the 100 classes rather than the 20 superclasses
for evaluations.

GTSRB: The German Traffic Sign Recognition Bench-
mark (GTSRB) contains 43 classes of traffic signs, divided
into 39,209 training images and 12,630 test images, each
with a size of 32x32 pixels.

D. Different Attacker Numbers
In the previous evaluations, we demonstrated the attack per-
formance of Mirage under varying numbers of attackers,
ranging from 1 to 5, on CIFAR-10. Additionally, we con-
ducted experiments on two other datasets, and the results
are presented in Table 6. The experimental results across
different datasets are consistent, indicating that Mirage ex-
hibits high usability with varying numbers of attackers and
does not induce potential infighting among them.

E. Patched Triggers
In Section 5, we evaluate the effectiveness of Mirage based
on blend triggers [5]. Consequently, we also use a square



CIFAR10 CIFAR100 GTSRB

Acc 92.40% 71.28% 96.66%
ASR 95.67% 96.06% 94.63%

Table 5. Performances of patched triggers.

Dataset Attacker Number N = 1 N = 2 N = 3 N = 4 N = 5

CIFAR10

Acc (↑) 92.37 92.53 92.16 92.11 92.12
ASR (↑) 99.06 99.15 98.80 98.375 98.484

Attacker 1 99.06 99.39 99.01 98.71 98.66
Attacker 2 - 98.9 98.63 98.43 97.54
Attacker 3 - - 98.77 97.47 98.51
Attacker 4 - - - 98.89 98.18
Attacker 5 - - - - 99.53

CIFAR100

Acc (↑) 71.70 72.04 71.65 72.05 71.64
ASR (↑) 99.82 99.50 99.05 99.26 99.21

Attacker 1 99.82 99.66 99.47 99.91 99.79
Attacker 2 - 99.34 98.98 98.95 99.21
Attacker 3 - - 98.70 99.71 99.24
Attacker 4 - - - 98.48 98.65
Attacker 5 - - - - 99.16

GTSRB

Acc (↑) 96.55 96.68 96.97 96.79 96.64
ASR (↑) 99.73 99.61 99.73 99.19 99.58

Attacker 1 99.73 99.82 99.79 99.86 99.98
Attacker 2 - 99.39 99.46 99.60 99.73
Attacker 3 - - 99.94 100.00 99.98
Attacker 4 - - - 97.31 98.50
Attacker 5 - - - - 99.73

Table 6. Performance for different attack numbers N across three
datasets. The Acc and ASR represent the averages for N attackers,
and the detailed ASR is provided in the following items.

patch as the trigger for Mirage. In the implementation, we
set the block size to 5x5 and applied it to the top-left cor-
ner of each sample. Aside from that, we do not change any
other parameters in the default settings. The t-SNE results
are presented in Fig 8, and the discussion is provided in
Section 6.1. The performance of the patched triggers are
presented in Table 5 that the trigger pattern has a slight in-
fluence on the ASRs, yet acceptable.
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Figure 8. The t-SNE of Mirage with pixel block as trigger pattern.

F. Trigger Visualization
We present the triggers and examples of backdoor sam-
ples of Mirage, A3FL and Vanilla in Fig. 9, Fig. 10 and
Fig. 11. The visualization results for PGD, Neurotoxin, and

(a) Vanilla 0 sample (b) Vanilla 1 sample (c) Vanilla 2 sample

(d) Vanilla 0 trigger (e) Vanilla 1 trigger (f) Vanilla 2 trigger

Figure 9. Vanilla Visualization

(a) A3FL 0 sample (b) A3FL 1 sample (c) A3FL 2 sample

(d) A3FL 0 trigger (e) A3FL 1 trigger (f) A3FL 2 trigger

Figure 10. A3FL Visualization

(a) Mirage 0 sample (b) Mirage 1 sample (c) Mirage 2 sample

(d) Mirage 0 trigger (e) Mirage 1 trigger (f) Mirage 2 trigger

Figure 11. Mirage Visualization

Chameleon are omitted since these attacks use static trig-
gers, differing solely in their training methodologies. Con-
sequently, their triggers align with Vanilla’s setup, meaning
the same attacker uses identical triggers across all static-
trigger attack methods. For instance, Attacker 0 uses the
trigger shown in Fig. 9a consistently across Vanilla, PGD,
Neurotoxin, and Chameleon, as do Attackers 1 and 2.


