
— Supplementary Material —
InstanceGaussian: Appearance-Semantic Joint Gaussian Representation for

3D Instance-Level Perception

Haijie Li1 Yanmin Wu1 Jiarui Meng1 Qiankun Gao1 Zhiyao Zhang3

Ronggang Wang1,2 Jian Zhang1,2*

1School of Electronic and Computer Engineering, Peking University, China
2Guangdong Provincial Key Laboratory of Ultra High Definition Immersive Media Technology,

Peking University Shenzhen Graduate School, China
3College of Information Science and Engineering, Northeastern University, China

In the supplementary materials, we provide additional experimental results and implementation as follows.
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1. Implementation Details
1.1. Training Strategy.
For ScanNet [3] dataset, we freeze the point cloud coordinates and disable 3DGS [5] densification. For the LeRF [6] dataset,
we optimize the point cloud coordinates and enable 3DGS densification. We stop 3DGS densification in 10k steps.

1.2. Training Time
We train each scene on a single 24G 3090 GPU (with actual memory usage around 5 to 10 GB). For the LeRF dataset, each
scene takes around 200 images and trains for approximately 70 minutes. For the ScanNet dataset, each scene takes around
100-300 images and trains for approximately 30 minutes. Tab. 1 shows the comparison with the baseline method in training
time. We selected level 3 to extract the SAM [7] mask.

Method Langslpat LEGaussian OpenGaussian Ours
Time (s) 1153 1011 1378 1847

Table 1. Comparation of training time in Scannet.

1.3. ScanNet Dataset Setting
We randomly selected 10 scenes from ScanNet for evaluation, specifically: scene0000 00, scene0062 00, scene0070 00,
scene0097 00, scene0140 00, scene0200 00, scene0347 00, scene0400 00, scene0590 00, scene0645 00. The 19 categories
(defined by ScanNet) used for text query are respectively: wall, floor, cabinet, bed, chair, sofa, table, door, window, bookshelf,
picture, counter, desk, curtain, refrigerator, shower curtain, toilet, sink, bathtub; 15 categories are without picture, refrigerator,
showercurtain, bathtub; 10 categories are further without cabinet, counter, desk, curtain, sink. We downsampled the training
images by a factor of 2 and selected SAM level 3 to extract supervision signals.
For the fixed point clouds in the ScanNet dataset, suboptimal processing often leads to degraded visual quality. To address
this, we identified well-optimized point clouds based on their contributions during rendering and utilized them to train a
lightweight MLP. The MLP takes position and color as inputs and predicts segmentation labels as outputs. Subsequently,
the trained MLP is employed to infer segmentation results for the point clouds. This approach yields smoother segmentation
outcomes, significantly enhancing visual quality.

2. Comparison with more Methods
We conducted comparisons with additional baselines in Tab. 2, demonstrating the superior performance of our method.

3. Ablation Study
3.1. More Detailed Ablation Metrics
We conducted a detailed ablation study with mA50 and mA25 metric in Tab. 3 and Tab. 4. We chose joint representation and
joint training as the best strategy for the segmentation topic, as mIoU is generally more reasonable than mAcc.

3.2. Hyperparameters
We conducted ablation experiments of hyperparameters in Tab. 5, demonstrating the robustness of our instantiated algorithm.
The hyperparameters reported in our paper were not carefully tuned, and we discovered even better performance when
adjusting them.

Semantic seg. Instance seg.
Method

mIoU mAcc. mIoU mAcc.
GAGA[8] -unsupported- 16.76 31.49
SAGA[2] 9.44 16.23 34.16 70.14

Ours 40.66 54.01 50.27 80.22

Table 2. Comparison with more methods.



Joint Semantic seg Instance Seg
Rep. Train. mIoU mAcc mIoU mA50 mA25
✓ 30.71 44.22 47.4 44.51 84.42

✓ 33.15 44.45 49.57 52.82 82.17
✓ ✓ 40.66 54.01 50.27 52.57 80.22

Table 3. Detailed ablation of joint representation and training.

Condition Semantic seg Instance Seg
Feat. Vox. mIoU mAcc mIoU mA50 mA25

✓ 21.75 33.39 27.50 16.16 49.33
✓ 28.98 40.58 43.41 40.63 72.50
✓ ✓ 40.66 54.01 50.27 52.57 80.22

Table 4. Detailed ablation of aggregation condition.

sample number voxel size connectivity thredshold
hyperparameters

200∼1000 0.05∼0.5 0.06∼0.18
semantic seg. mIoU 37.87±2.79 38.96±1.70 38.48±2.17
instance seg. mIoU 49.60±1.31 49.56±0.71 49.90±1.29

Table 5. Abliation of hyperparameters.

3.3. Randomness and Runtime of FPS
We randomly sampled different starting points for FPS in Tab. 6, and the results demonstrated the robustness of our method.
We also evaluated runtime across different sample number (K) in Tab. 7. While the merging algorithm has a complexity of
O(K2), K shows limited impact on overall runtime in practice (up to 3.43%).

Sample times Semantic Seg. mIoU Instance Seg. mIoU
5 39.44±1.38 48.57±0.98

Table 6. Ablation experiment of randomness in FPS.

Variation Merging time(s) Total time(s) Percentage
200∼1000 5∼63 1772∼1847 0.28%∼3.43%

Table 7. Ablation experiment of different K.

3.4. Aggregation Algorithm
We compare our aggregation algorithm against clustering features by HDBSCAN[1] in Tab. 8, demonstrating our superiority.

Method Semantic Seg. mIoU Instance Seg. mIoU
HDBSCAN 31.84 44.76

Ours 40.66 50.27

Table 8. Ablation of aggregation algorithm.

4. More Visual Results
To demonstrate the effectiveness of our approach, we conducted additional experiments on ScanNet[3] to prove our perfor-
mance on category-agnostic 3D instance segmentation (Fig. 1) and open-vocabulary query point cloud understanding (Fig. 2).
Additionally, we provide more 2D instance segmentation results on LeRF[6] (Fig. 3). We also performed experiments on
GraspNet [4] dataset (Fig. 4), and the results indicate the generalization capabilities of our method.
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Figure 1. Top row: Reference mesh of scenes. Bottom row: The visualization result of category-agnostic 3D instance segmentation in
ScanNet dataset.
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Figure 2. The visualization result of open-vocabulary query point cloud understanding in ScanNet [3] dataset.

Additionally, we visualized our feature maps (Fig. 5) to validate the effectiveness of appearance-semantic joint Gaussian
representation.
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Figure 3. The 2D visualization result of 3D instance segmentation in LeRF dataset.
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Figure 4. Top: Reference image of scenes. Middle: Constructed 3D Gaussians/points. Bottom: The visualization result of category-
agnostic 3D instance segmentation in GraspNet dataset.
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Figure 5. The feature map of InstanceGaussian. Left: Reference images of the scene. Middle: The visualization result of feature maps of
InstanceGaussian. Right: The visualization result of feature maps without joint training.



Reference image GT mask Most SAM mask InstanceGaussian

c

Figure 6. The failure case of ramen in LeRF dataset. Frequent mask failures will undermine the ability to distinguish different food in the
bowl.
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Figure 7. The failure case of aggregate the large meeting table in scene0140 00. Due to the table’s large size and the lack of fully captured
views, our method struggles to learn consistent features and achieve accurate aggregation, even when the SAM mask is correct.

5. Analysis of Failure Cases
We analyze two main issues affecting the model’s performance.

Incorrect SAM mask. Our method demonstrates robustness against sparse segmentation errors when SAM masks are pre-
dominantly accurate. However, frequent mask failures prevent effective learning of region-specific object features, ultimately
compromising segmentation accuracy (Fig. 6).

Failure in learning consistent feature for large object. Our method demonstrates superior performance in aggregating
small objects (e.g., doors, chairs, televisions) but encounters challenges with large-scale objects (e.g., floors, meeting tables).
Due to the limited coverage of individual photographs, large objects are often only partially captured, with few complete
observations across views. Under such conditions, Ls (Eq. 2) fails to learn consistent features for complete objects and Lc

(Eq. 3) amplifies the divergence between parts (Fig. 7). In contrast, small objects benefit from more complete observations,
enabling Ls (Eq. 2) to learn coherent features.
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